Hybrid CNN-transformer network for efficient CSI feedback

被引:0
|
作者
Zhao, Ruohan [1 ]
Liu, Ziang [1 ]
Song, Tianyu [1 ]
Jin, Jiyu [1 ]
Jin, Guiyue [1 ]
Fan, Lei [1 ]
机构
[1] Dalian Polytech Univ, Sch Informat Sci & Engn, Dalian 116034, Peoples R China
关键词
CSI feedback; Massive MIMO; Self-attention; Transformer; Convolutional neural networks; Deep learning;
D O I
10.1016/j.phycom.2024.102477
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In recent years, many deep learning-based methods have been utilized for the feedback of Channel State Information (CSI) in massive MIMO systems. The Transformer-based networks leverage global self-attention mechanisms that can effectively capture remote correlations between antennas, while Convolutional Neural Networks (CNNs) excel in acquiring local information. To balance the advantages of both, this paper proposes an Efficient Feature Aggregation Network called EFANet, which hybrid CNNs and Transformer. Specifically, we propose a Refined Window Multi-head Self-Attention (RW-MSA) through hybrid Convolutional Embedding Unit (CEU) and Window Multi-head Self-Attention (W-MSA) to reduce information loss between windows and achieve efficient feature aggregation. Additionally, we develop a Local Enhanced Feedforward Network (LEFN) to further integrate local information in the CSI matrix and model detailed features of different regions. Finally, the Compensation Unit (CU) is designed to further compensate for global-local features in the CSI matrix. Through the above design, the global and local features are fully interactive to reduce information loss. Numerous experiments have shown that the proposed method achieves better CSI reconstruction performance while reducing computational complexity.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Image harmonization with Simple Hybrid CNN-Transformer Network
    Li, Guanlin
    Zhao, Bin
    Li, Xuelong
    [J]. NEURAL NETWORKS, 2024, 180
  • [2] CTHPose: An Efficient and Effective CNN-Transformer Hybrid Network for Human Pose Estimation
    Chen, Danya
    Wu, Lijun
    Chen, Zhicong
    Lin, Xufeng
    [J]. PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT V, 2024, 14429 : 327 - 339
  • [3] TFCNs: A CNN-Transformer Hybrid Network for Medical Image Segmentation
    Li, Zihan
    Li, Dihan
    Xu, Cangbai
    Wang, Weice
    Hong, Qingqi
    Li, Qingde
    Tian, Jie
    [J]. ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2022, PT IV, 2022, 13532 : 781 - 792
  • [4] HCTNet: A hybrid CNN-transformer network for breast ultrasound image segmentation
    He, Qiqi
    Yang, Qiuju
    Xie, Minghao
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 155
  • [5] Hybrid CNN-Transformer Network for Electricity Theft Detection in Smart Grids
    Bai, Yu
    Sun, Haitong
    Zhang, Lili
    Wu, Haoqi
    [J]. SENSORS, 2023, 23 (20)
  • [6] Hybrid CNN-transformer network for interactive learning of challenging musculoskeletal images
    Bi, Lei
    Buehner, Ulrich
    Fu, Xiaohang
    Williamson, Tom
    Choong, Peter
    Kim, Jinman
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2024, 243
  • [7] CNN-Transformer hybrid network for concrete dam crack patrol inspection
    Li, Mingchao
    Yuan, Jingyue
    Ren, Qiubing
    Luo, Qiling
    Fu, Junen
    Li, Zhitang
    [J]. AUTOMATION IN CONSTRUCTION, 2024, 163
  • [8] An efficient CNN-transformer hybrid approach for water turbine unit failure prediction
    Zhang, Kefeng
    He, Ming
    Guo, Junxin
    [J]. JOURNAL OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING, 2024, 24 (02) : 823 - 834
  • [9] An Efficient Hybrid CNN-Transformer Approach for Remote Sensing Super-Resolution
    Zhang, Wenjian
    Tan, Zheng
    Lv, Qunbo
    Li, Jiaao
    Zhu, Baoyu
    Liu, Yangyang
    [J]. REMOTE SENSING, 2024, 16 (05)
  • [10] CNN-TransNet: A Hybrid CNN-Transformer Network With Differential Feature Enhancement for Cloud Detection
    Ma, Nan
    Sun, Lin
    He, Yawen
    Zhou, Chenghu
    Dong, Chuanxiang
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20