Diffusion approximation of a network model of meme popularity

被引:0
|
作者
Oliveira, Kleber A. [1 ]
Unicomb, Samuel [1 ]
Gleeson, James P. [1 ]
机构
[1] Univ Limerick, Dept Math & Stat, MACSI, Limerick, Ireland
来源
PHYSICAL REVIEW RESEARCH | 2023年 / 5卷 / 02期
基金
爱尔兰科学基金会;
关键词
Central Limit Theorem - Diffusion approximations - Heavy-tailed - Local network dynamics - Network models - On-line setting - One-dimensional - Popularity distribution - Stable distributions - User attention;
D O I
10.1103/PhysRevResearch.5.023079
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Models of meme propagation on social networks, in which memes compete for limited user attention, can successfully reproduce the heavy-tailed popularity distributions observed in online settings. While system-wide popularity distributions have been derived analytically, the dynamics of individual meme trajectories have thus far evaded description. To address this, we formulate the diffusion of a given meme as a one-dimensional stochas-tic process, whose fluctuations result from aggregating local network dynamics using classic and generalized central limit theorems, with the latter based on stable distribution theory. Ultimately, our approach decouples competing trajectories of meme popularities, allowing them to be simulated independently, and thus parallelized and expressed in terms of Fokker-Planck equations.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Popularity Prediction in Microblogging Network
    Gao, Shuai
    Ma, Jun
    Chen, Zhumin
    [J]. WEB TECHNOLOGIES AND APPLICATIONS, APWEB 2014, 2014, 8709 : 379 - 390
  • [42] RNe2Vec: information diffusion popularity prediction based on repost network embedding
    Jiaxing Shang
    Shuo Huang
    Dingyang Zhang
    Zixuan Peng
    Dajiang Liu
    Yong Li
    Lexi Xu
    [J]. Computing, 2021, 103 : 271 - 289
  • [43] RNe2Vec: information diffusion popularity prediction based on repost network embedding
    Shang, Jiaxing
    Huang, Shuo
    Zhang, Dingyang
    Peng, Zixuan
    Liu, Dajiang
    Li, Yong
    Xu, Lexi
    [J]. COMPUTING, 2021, 103 (02) : 271 - 289
  • [44] A Meme is Not a Virus: The Role of Cognitive Heuristics in Information Diffusion
    Lerman, Kristina
    [J]. PROCEEDINGS OF THE 28TH ACM CONFERENCE ON HYPERTEXT AND SOCIAL MEDIA (HT'17), 2017, : 1 - 1
  • [45] On absolute ruin minimization under a diffusion approximation model
    Luo, Shangzhen
    Taksar, Michael
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2011, 48 (01): : 123 - 133
  • [46] A MODEL OF DIFFUSION METASOMATISM IN QUASI-STATIONARY APPROXIMATION
    VOLKOVA, NI
    SHEPLEV, VS
    [J]. DOKLADY AKADEMII NAUK SSSR, 1980, 252 (05): : 1224 - 1227
  • [47] DIFFUSION APPROXIMATION OF A POISSON MODEL FOR CUMULATIVE EXCESS RETURNS
    Pavlenko, O.
    Pola, A.
    Carkovs, Je.
    [J]. CYBERNETICS AND SYSTEMS ANALYSIS, 2015, 51 (05) : 772 - 781
  • [48] ON THE DIFFUSION-APPROXIMATION TO A FORK AND JOIN QUEUING MODEL
    KNESSL, C
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1991, 51 (01) : 160 - 171
  • [49] Diffusion approximation of the stochastic Wilson-Cowan model
    Zankoc, Clement
    Biancalani, Tommaso
    Fanelli, Duccio
    Livi, Roberto
    [J]. CHAOS SOLITONS & FRACTALS, 2017, 103 : 504 - 512
  • [50] APPROXIMATION OF A SEMIGROUP MODEL OF ANOMALOUS DIFFUSION IN A BOUNDED SET
    Thompson, Stephen
    Seidman, Thomas I.
    [J]. EVOLUTION EQUATIONS AND CONTROL THEORY, 2013, 2 (01): : 173 - 192