Diffusion approximation of the stochastic Wilson-Cowan model

被引:8
|
作者
Zankoc, Clement [1 ,2 ]
Biancalani, Tommaso [3 ]
Fanelli, Duccio [1 ,2 ]
Livi, Roberto [1 ,2 ]
机构
[1] Univ Firenze, CSDC, Dipartimento Fis & Astron, Via G Sansone 1, I-50019 Sesto Fiorentino, Italy
[2] Univ Firenze, INFN, Via G Sansone 1, I-50019 Sesto Fiorentino, Italy
[3] MIT, Dept Phys, Phys Living Syst, Cambridge, MA 02139 USA
关键词
Stochastic models; Bistability; Kramers Moyal; Neuronal dynamics; DYNAMICS;
D O I
10.1016/j.chaos.2017.07.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a stochastic version of the Wilson-Cowan model which accommodates for discrete populations of excitatory and inhibitory neurons. The model assumes a finite carrying capacity with the two populations being constant in size. The master equation that governs the dynamics of the stochastic model is analyzed by an expansion in powers of the inverse population size, yielding a coupled pair of non-linear Langevin equations with multiplicative noise. Gillespie simulations show the validity of the obtained approximation, for the parameter region where the system exhibits dynamical bistability. We report analytical progress by silencing the retroaction of excitatory neurons on inhibitory neurons, while still assigning the parameters so to fall in the region of deterministic bistability for the excitatory species. The proposed approach forms the basis of a perturbative generalization which applies to the case where a modest degree of coupling is restored. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:504 / 512
页数:9
相关论文
共 50 条
  • [1] Critical behaviour of the stochastic Wilson-Cowan model
    de Candia, Antonio
    Sarracino, Alessandro
    Apicella, Ilenia
    de Arcangelis, Lucilla
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2021, 17 (08)
  • [2] Bistability and criticality in the stochastic Wilson-Cowan model
    Golpayegan, Hanieh Alvankar
    de Candia, Antonio
    [J]. PHYSICAL REVIEW E, 2023, 107 (03)
  • [3] The Wilson-Cowan model, 36 years later
    Destexhe, Alain
    Sejnowski, Terrence J.
    [J]. BIOLOGICAL CYBERNETICS, 2009, 101 (01) : 1 - 2
  • [4] Homogenization of a Wilson-Cowan model for neural fields
    Svanstedt, Nils
    Woukeng, Jean Louis
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2013, 14 (03) : 1705 - 1715
  • [5] Metastable states and quasicycles in a stochastic Wilson-Cowan model of neuronal population dynamics
    Bressloff, Paul C.
    [J]. PHYSICAL REVIEW E, 2010, 82 (05):
  • [6] Noise-Induced Precursors of State Transitions in the Stochastic Wilson-Cowan Model
    Negahbani, Ehsan
    Steyn-Ross, D. Alistair
    Steyn-Ross, Moira L.
    Wilson, Marcus T.
    Sleigh, Jamie W.
    [J]. JOURNAL OF MATHEMATICAL NEUROSCIENCE, 2015, 5 : 1 - 27
  • [7] Evolution of the Wilson-Cowan equations
    Wilson, Hugh R.
    Cowan, Jack D.
    [J]. BIOLOGICAL CYBERNETICS, 2021, 115 (06) : 643 - 653
  • [8] Observations of dynamical behavior in a stochastic Wilson-Cowan population with plasticity
    Jeremy Neuman
    Bert Kiewiet
    Jack D Cowan
    Wim van Drongelen
    [J]. BMC Neuroscience, 14 (Suppl 1)
  • [9] Power spectrum and critical exponents in the 2D stochastic Wilson-Cowan model
    Apicella, I.
    Scarpetta, S.
    de Arcangelis, L.
    Sarracino, A.
    de Candia, A.
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01):
  • [10] A periodically forced Wilson-Cowan system
    Noonburg, VW
    Benardete, D
    Pollina, B
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2003, 63 (05) : 1585 - 1603