Biosynthesis of the Azoxy Compound Azodyrecin from Streptomyces mirabilis P8-A2

被引:3
|
作者
Maleckis, Matiss [1 ]
Wibowo, Mario [2 ,3 ]
Gren, Tetiana [1 ]
Jarmusch, Scott A. [2 ]
Sterndorff, Eva B. [1 ]
Booth, Thomas [1 ]
Henriksen, Nathalie N. S. E. [2 ]
Whitford, Christopher M. [1 ]
Jiang, Xinglin [1 ]
Jorgensen, Tue S. [1 ]
Ding, Ling [2 ]
Weber, Tilmann [1 ]
机构
[1] Tech Univ Denmark, Novo Nord Fdn Ctr Biosustainabil, DK-2800 Lyngby, Denmark
[2] Tech Univ Denmark, Dept Biotechnol & Biomed, DK-2800 Lyngby, Denmark
[3] ASTAR, Singapore Inst Food & Biotechnol Innovat SIFBI, Singapore 138669, Singapore
基金
新加坡国家研究基金会;
关键词
ISOBUTYLAMINE N-HYDROXYLASE; FATTY-ACID-COMPOSITION; VALANIMYCIN BIOSYNTHESIS; VIRIDIFACIENS; ANTIBIOTICS; PRODUCER; COELICOLOR; AZOXIDES; TAXONOMY; CLONING;
D O I
10.1021/acschembio.3c00632
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Azoxy compounds are a distinctive group of bioactive secondary metabolites characterized by a unique RN=N+(O-)R moiety. The azoxy moiety is present in various classes of metabolites that exhibit various biological activities. The enzymatic mechanisms underlying azoxy bond formation remain enigmatic. Azodyrecins are cytotoxic azoxy metabolites produced by Streptomyces mirabilis P8-A2. Here, we cloned and confirmed the putative azd biosynthetic gene cluster through CATCH cloning followed by expression and production of azodyrecins in two heterologous hosts, S. albidoflavus J1074 and S. coelicolor M1146, respectively. We explored the function of 14 enzymes in azodyrecin biosynthesis through gene knockout using CRISPR-Cas9 base editing in the native producer, S. mirabilis P8-A2. The key intermediates were analyzed in the mutants through MS/MS fragmentation studies, revealing azoxy bond formation via the conversion of hydrazine to an azo compound followed by further oxygenation. Enzymes involved in modifications of the precursor could be postulated based on their predicted function and the intermediates identified in the knockout strains. Moreover, the distribution of the azoxy biosynthetic gene clusters across Streptomyces spp. genomes is explored, highlighting the presence of these clusters in over 20% of the Streptomyces spp. genomes and revealing that azoxymycin and valanimycin are scarce, while azodyrecin and KA57A-like clusters are widely distributed across the phylogenetic tree.
引用
收藏
页码:641 / 653
页数:13
相关论文
共 50 条
  • [21] 1-Methoxypyrrole-2-carboxamide-A new pyrrole compound isolated from Streptomyces griseocarneus SWW368
    Wattanasuepsin, Watsapon
    Intra, Bungonsiri
    Euanorasetr, Jirayut
    Watanabe, Yoshihiro
    Mingma, Ratchanee
    Fukasawa, Wataru
    Mori, Mihoko
    Matsumoto, Atsuko
    Shiomi, Kazuro
    Panbangred, Watanalai
    JOURNAL OF GENERAL AND APPLIED MICROBIOLOGY, 2017, 63 (04): : 207 - 211
  • [22] Functional analysis and crystallographic structure of clotrimazole bound OleP, a cytochrome P450 epoxidase from Streptomyces antibioticus involved in oleandomycin biosynthesis
    Montemiglio, Linda Celeste
    Parisi, Giacomo
    Scaglione, Antonella
    Sciara, Giuliano
    Savino, Carmelinda
    Vallone, Beatrice
    BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS, 2016, 1860 (03): : 465 - 475
  • [23] Identification by Genome Mining of a Type I Polyketide Gene Cluster from Streptomyces argillaceus Involved in the Biosynthesis of Pyridine and Piperidine Alkaloids Argimycins P
    Ye, Suhui
    Molloy, Brian
    Brana, Alfredo F.
    Zabala, Daniel
    Olano, Carlos
    Cortes, Jesus
    Moris, Francisco
    Salas, Jose A.
    Mendez, Carmen
    FRONTIERS IN MICROBIOLOGY, 2017, 8
  • [24] Purification and initial characterization of proline 4-hydroxylase from Streptomyces griseoviridus P8648: A 2-oxoacid, ferrous-dependent dioxygenase involved in etamycin biosynthesis
    Lawrence, CC
    Sobey, WJ
    Field, RA
    Baldwin, JE
    Schofield, CJ
    BIOCHEMICAL JOURNAL, 1996, 313 : 185 - 191
  • [25] BIOSYNTHESIS OF QUINOXALINE ANTIBIOTICS - PURIFICATION AND CHARACTERIZATION OF THE QUINOXALINE-2-CARBOXYLIC ACID ACTIVATING ENZYME FROM STREPTOMYCES-TRIOSTINICUS
    GLUND, K
    SCHLUMBOHM, W
    BAPAT, M
    KELLER, U
    BIOCHEMISTRY, 1990, 29 (14) : 3522 - 3527
  • [26] GENES FOR 2 HERBICIDE-INDUCIBLE CYTOCHROMES-P-450 FROM STREPTOMYCES-GRISEOLUS
    OMER, CA
    LENSTRA, R
    LITLE, PJ
    DEAN, C
    TEPPERMAN, JM
    LETO, KJ
    ROMESSER, JA
    OKEEFE, DP
    JOURNAL OF BACTERIOLOGY, 1990, 172 (06) : 3335 - 3345
  • [27] Antimicrobial compound from a novel Streptomyces termitum strain ATC-2 against Xanthomonas oryzae pv. oryzae
    Jiang Donghua
    Liu Qinying
    Song Yiming
    Ji Hao
    RESEARCH JOURNAL OF BIOTECHNOLOGY, 2013, 8 (07): : 66 - 70
  • [28] Biosynthesis of fluoroacetate and 4-fluorothreonine in Streptomyces cattleya.: Incorporation of oxygen-18 from [2-2H,2-18O]-glycerol and the role of serine metabolites in fluoroacetaldehyde biosynthesis
    Schaffrath, C
    Murphy, CD
    Hamilton, JTG
    O'Hagan, D
    JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 1, 2001, (23): : 3100 - 3105
  • [29] STEREOSPECIFICITY OF THE ENZYMATIC DEHYDROGENATION IN THE BIOSYNTHESIS OF 3-ETHYLIDENE-L-AZETIDINE-2-CARBOXYLIC ACID FROM ISOLEUCINE BY STREPTOMYCES-CACAOI
    HILL, RK
    RHEE, SW
    ISONO, K
    CROUT, DHG
    SUHADOLNIK, RJ
    BIOCHEMISTRY, 1981, 20 (24) : 7040 - 7042
  • [30] AvaR2, a pseudo -butyrolactone receptor homologue from Streptomyces avermitilis, is a pleiotropic repressor of avermectin and avenolide biosynthesis and cell growth
    Zhu, Jianya
    Sun, Di
    Liu, Wenshuai
    Chen, Zhi
    Li, Jilun
    Wen, Ying
    MOLECULAR MICROBIOLOGY, 2016, 102 (04) : 562 - 578