Use of 3D-printed polylactic acid/bioceramic composite scaffolds for bone tissue engineering in preclinical in vivo studies: A systematic review

被引:37
|
作者
Alonso-Fernandez, Ivan [1 ,3 ]
Haugen, Havard Jostein [2 ]
Lopez-Pena, Monica [1 ]
Gonzalez-Cantalapiedra, Antonio [1 ]
Munoz, Fernando [1 ]
机构
[1] Univ Santiago de Compostela, Vet Fac, Anat Anim Prod & Vet Clin Sci Dept, Campus Univ S-N, Lugo 27002, Spain
[2] Univ Oslo, Inst Clin Dent, Fac Dent, Dept Biomat, Oslo, Norway
[3] Campus Univ S-N, Lugo 27002, Spain
关键词
Animal models; Polylactic acid; Bioceramic; 3D-printing technology; Composite scaffolds; Bone regeneration; 3D PRINTED SCAFFOLDS; POROUS SCAFFOLDS; LACTIC-ACID; STEM-CELLS; REGENERATION; DEFECT; FABRICATION; MODELS; PLA; BIOCOMPATIBILITY;
D O I
10.1016/j.actbio.2023.07.013
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
3D-printed composite scaffolds have emerged as an alternative to deal with existing limitations when facing bone reconstruction. The aim of the study was to systematically review the feasibility of using PLA/bioceramic composite scaffolds manufactured by 3D-printing technologies as bone grafting materi-als in preclinical in vivo studies. Electronic databases were searched using specific search terms, and thirteen manuscripts were selected after screening. The synthesis of the scaffolds was carried out using mainly extrusion-based techniques. Likewise, hydroxyapatite was the most used bioceramic for synthe-sizing composites with a PLA matrix. Among the selected studies, seven were conducted in rats and six in rabbits, but the high variability that exists regarding the experimental process made it difficult to compare them. Regarding the results, PLA/Bioceramic composite scaffolds have shown to be biocompat-ible and mechanically resistant. Preclinical studies elucidated the ability of the scaffolds to be used as bone grafts, allowing bone growing without adverse reactions. In conclusion, PLA/Bioceramics scaffolds have been demonstrated to be a promising alternative for treating bone defects. Nevertheless, more care should be taken when designing and performing in vivo trials, since the lack of standardization of the processes, which prevents the comparison of the results and reduces the quality of the information. Statement of Significance 3D-printed polylactic acid/bioceramic composite scaffolds have emerged as an alternative to deal with existing limitations when facing bone reconstruction. Since preclinical in vivo studies with animal mod-els represent a mandatory step for clinical translation, the present manuscript analyzed and discussed not only those aspects related to the selection of the bioceramic material, the synthesis of the implants and their characterization. But provides a new approach to understand how the design and perform of clinical trials, as well as the selection of the analysis methods, may affect the obtained results, by cov-ering authors' knowledgebase from veterinary medicine to biomaterial science. Thus, this study aims to systematically review the feasibility of using polylactic acid/bioceramic scaffolds as grafting materials in preclinical trials. & COPY; 2023 The Author(s). Published by Elsevier Ltd on behalf of Acta Materialia Inc. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )
引用
收藏
页码:1 / 21
页数:21
相关论文
共 50 条
  • [41] Biomimetic, mussel-inspired surface modification of 3D-printed biodegradable polylactic acid scaffolds with nano-hydroxyapatite for bone tissue engineering
    Chi, Minghan
    Li, Na
    Cui, Junkui
    Karlin, Sabrina
    Rohr, Nadja
    Sharma, Neha
    Thieringer, Florian M.
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 10
  • [42] 3D-printed tubular scaffolds for vascular tissue engineering
    Rabionet, Marc
    Jesus Guerra, Antonio
    Puig, Teresa
    Ciurana, Joaquim
    19TH CIRP CONFERENCE ON ELECTRO PHYSICAL AND CHEMICAL MACHINING, 2018, 68 : 352 - 357
  • [43] Elastic 3D-Printed Nanofibers Composite Scaffold for Bone Tissue Engineering
    Cai P.
    Li C.
    Ding Y.
    Lu H.
    Yu X.
    Cui J.
    Yu F.
    Wang H.
    Wu J.
    EL-Newehy M.
    Abdulhameed M.M.
    Song L.
    Mo X.
    Sun B.
    ACS Applied Materials and Interfaces, 2023, 15 (47): : 54280 - 54293
  • [44] Elastic 3D-Printed Nanofibers Composite Scaffold for Bone Tissue Engineering
    Cai, Pengfei
    Li, Chunchun
    Ding, Yangfan
    Lu, Hanting
    Yu, Xiao
    Cui, Jie
    Yu, Fan
    Wang, Hongsheng
    Wu, Jinglei
    EL-Newehy, Mohamed
    Abdulhameed, Meera Moydeen
    Song, Liang
    Mo, Xiumei
    Sun, Binbin
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (47) : 54280 - 54293
  • [45] Effect of the filling pattern in 3D-printed polylactic acid scaffolds on mechanical properties and cell proliferation for bone tissue regeneration
    Cao, Jian
    Li, Xiuhui
    Liu, Zhongxing
    Yu, Haoran
    Zhang, Sidi
    Li, Jinlong
    MATERIALS LETTERS, 2024, 364
  • [46] Effect of the filling pattern in 3D-printed polylactic acid scaffolds on mechanical properties and cell proliferation for bone tissue regeneration
    Jian, Cao
    Xiuhui, Li
    Zhongxing, Liu
    Haoran, Yu
    Sidi, Zhang
    Jinlong, Li
    Materials Letters, 2024, 364
  • [47] 3D-Printed Flat-Bone-Mimetic Bioceramic Scaffolds for Cranial Restoration
    Zhang, Yihang
    He, Fupo
    Zhang, Qiang
    Lu, Haotian
    Yan, Shengtao
    Shi, Xuetao
    RESEARCH, 2023, 6
  • [48] Bone tissue engineering scaffolds with HUVECs/hBMSCs cocultured on 3D-printed composite bioactive ceramic scaffolds promoted osteogenesis/angiogenesis
    Liu, Xiao
    Zhao, Naru
    Liang, Haifeng
    Tan, Bizhi
    Huang, Fangli
    Hu, Hao
    Chen, Yan
    Wang, Gang
    Ling, Zemin
    Liu, Chun
    Miao, Yali
    Wang, Yingjun
    Zou, Xuenong
    JOURNAL OF ORTHOPAEDIC TRANSLATION, 2022, 37 : 152 - 162
  • [49] Bone Tissue Engineering through 3D Bioprinting of Bioceramic Scaffolds: A Review and Update
    Khalaf, Ahmad Taha
    Wei, Yuanyuan
    Wan, Jun
    Zhu, Jiang
    Peng, Yu
    Kadir, Samiah Yasmin Abdul
    Zainol, Jamaludin
    Oglah, Zahraa
    Cheng, Lijia
    Shi, Zheng
    LIFE-BASEL, 2022, 12 (06):
  • [50] Surface engineering of 3D-printed polylactic acid scaffolds with polydopamine and 4-methoxycinnamic acid-chitosan nanoparticles for bone regeneration
    Shanmugavadivu, Abinaya
    Selvamurugan, Nagarajan
    NANOSCALE ADVANCES, 2025, 7 (06): : 1636 - 1649