Deep learning ensemble 2D CNN approach towards the detection of lung cancer

被引:42
|
作者
Shah, Asghar Ali [1 ]
Malik, Hafiz Abid Mahmood [2 ]
Muhammad, AbdulHafeez [1 ]
Alourani, Abdullah [3 ]
Butt, Zaeem Arif [1 ]
机构
[1] Bahria Univ, Dept Comp Sci, Islamabad, Pakistan
[2] Arab Open Univ Bahrain, Fac Comp Studies, Aali, Bahrain
[3] Majmaah Univ, Coll Sci Zulfi, Dept Comp Sci & Informat, Al Majmaah, Saudi Arabia
来源
SCIENTIFIC REPORTS | 2023年 / 13卷 / 01期
关键词
FALSE-POSITIVE REDUCTION;
D O I
10.1038/s41598-023-29656-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In recent times, deep learning has emerged as a great resource to help research in medical sciences. A lot of work has been done with the help of computer science to expose and predict different diseases in human beings. This research uses the Deep Learning algorithm Convolutional Neural Network (CNN) to detect a Lung Nodule, which can be cancerous, from different CT Scan images given to the model. For this work, an Ensemble approach has been developed to address the issue of Lung Nodule Detection. Instead of using only one Deep Learning model, we combined the performance of two or more CNNs so they could perform and predict the outcome with more accuracy. The LUNA 16 Grand challenge dataset has been utilized, which is available online on their website. The dataset consists of a CT scan with annotations that better understand the data and information about each CT scan. Deep Learning works the same way our brain neurons work; therefore, deep learning is based on Artificial Neural Networks. An extensive CT scan dataset is collected to train the deep learning model. CNNs are prepared using the data set to classify cancerous and non-cancerous images. A set of training, validation, and testing datasets is developed, which is used by our Deep Ensemble 2D CNN. Deep Ensemble 2D CNN consists of three different CNNs with different layers, kernels, and pooling techniques. Our Deep Ensemble 2D CNN gave us a great result with 95% combined accuracy, which is higher than the baseline method.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Deep learning for lung Cancer detection and classification
    A. Asuntha
    Andy Srinivasan
    Multimedia Tools and Applications, 2020, 79 : 7731 - 7762
  • [32] Deep learning for lung Cancer detection and classification
    Asuntha, A.
    Srinivasan, Andy
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (11-12) : 7731 - 7762
  • [33] Classification of 2D Ultrasound Breast Cancer Images with Deep Learning
    Ellis, Jack
    Appiah, Kofi
    Amankwaa-Frempong, Emmanuel
    Kwok, Sze Chai
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW, 2024, : 5167 - 5173
  • [34] An Ensemble Deep Learning Model for the Detection and Classification of Breast Cancer
    Sami, Joy Christy Antony
    Arumugam, Umamakeswari
    MIDDLE EAST JOURNAL OF CANCER, 2024, 15 (01) : 40 - 51
  • [35] Ensemble deep learning system for early breast cancer detection
    Hekal, Asmaa A.
    Moustafa, Hossam El-Din
    Elnakib, Ahmed
    EVOLUTIONARY INTELLIGENCE, 2023, 16 (03) : 1045 - 1054
  • [36] Ensemble deep learning system for early breast cancer detection
    Asmaa A. Hekal
    Hossam El-Din Moustafa
    Ahmed Elnakib
    Evolutionary Intelligence, 2023, 16 : 1045 - 1054
  • [37] A 3D CNN APPROACH FOR CHANGE DETECTION IN HR SATELLITE IMAGE TIME SERIES BASED ON A PRETRAINED 2D CNN
    Meshkini, K.
    Bovolo, F.
    Bruzzone, L.
    XXIV ISPRS CONGRESS: IMAGING TODAY, FORESEEING TOMORROW, COMMISSION III, 2022, 43-B3 : 143 - 150
  • [38] Breast cancer detection using an ensemble deep learning method
    Das, Abhishek
    Mohanty, Mihir Narayan
    Mallick, Pradeep Kumar
    Tiwari, Prayag
    Muhammad, Khan
    Zhu, Hongyin
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 70
  • [39] Towards a Hierarchical Deep Learning Approach for Intrusion Detection
    Alin, Francois
    Chemchem, Amine
    Nolot, Florent
    Flauzac, Olivier
    Krajecki, Michael
    MACHINE LEARNING FOR NETWORKING (MLN 2019), 2020, 12081 : 15 - 27
  • [40] CNN-based glioma detection in MRI: A deep learning approach
    Wang, Jing
    Yin, Liang
    TECHNOLOGY AND HEALTH CARE, 2024, 32 (06) : 4965 - 4982