An Ensemble Deep Learning Model for the Detection and Classification of Breast Cancer

被引:0
|
作者
Sami, Joy Christy Antony [1 ]
Arumugam, Umamakeswari [2 ]
机构
[1] SASTRA Deemed Be Univ, Sch Comp, Dept Comp Sci, Thanjavur, India
[2] SASTRA Deemed Be Univ, Sch Comp, Thanjavur, India
关键词
Biopsy; Mammography; Machine learning; Cytology; Deep learning; MAMMOGRAPHY;
D O I
10.30476/mejc.2023.97317.1857
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: Detecting breast cancer in its early stages remains a significant challenge in the present context and is a leading cause of death among women, primarily due to delayed identification. This paper presents a practical and accurate approach based on deep learning to identify breast cancer in cytology images. Method: The analytical approach leverages knowledge from a related problem through a technique known as transfer learning. Convolutional neural networks (CNNs) are employed due to their remarkable performance on large datasets. Image classification architectures such as Google network (GoogleNet), Visual geographical group network (VGGNet), residual network (ResNet), and dense convolution network (DenseNet) are utilized in this approach. By applying transfer learning, the images are classified into two categories: those containing cancer cells and those without them. The performance of the proposed ensemble method is evaluated using a breast cytology image dataset. Results: The results of our proposed ensemble framework outperform conventional CNN models in terms of precision, recall, and F1 measures, achieving an impressive 86% prediction accuracy. Visual representations of validation graphs for each classifier demonstrate that the ensemble framework surpasses the performance of pre-trained CNN architectures. Conclusion: Combining the outcomes of conventional CNN architectures into an ensemble framework enhances early breast cancer detection, leading to a reduction in mortality through timely medical interventions.
引用
收藏
页码:40 / 51
页数:12
相关论文
共 50 条
  • [1] Deep learning-based ensemble model for classification of breast cancer
    Nemade, Varsha
    Pathak, Sunil
    Dubey, Ashutosh Kumar
    [J]. MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2024, 30 (05): : 513 - 527
  • [2] Optimized Stacking Ensemble Learning Model for Breast Cancer Detection and Classification Using Machine Learning
    Kumar, Mukesh
    Singhal, Saurabh
    Shekhar, Shashi
    Sharma, Bhisham
    Srivastava, Gautam
    [J]. SUSTAINABILITY, 2022, 14 (21)
  • [3] Ensemble deep learning system for early breast cancer detection
    Hekal, Asmaa A.
    Moustafa, Hossam El-Din
    Elnakib, Ahmed
    [J]. EVOLUTIONARY INTELLIGENCE, 2023, 16 (03) : 1045 - 1054
  • [4] Ensemble deep learning system for early breast cancer detection
    Asmaa A. Hekal
    Hossam El-Din Moustafa
    Ahmed Elnakib
    [J]. Evolutionary Intelligence, 2023, 16 : 1045 - 1054
  • [5] Breast cancer detection using an ensemble deep learning method
    Das, Abhishek
    Mohanty, Mihir Narayan
    Mallick, Pradeep Kumar
    Tiwari, Prayag
    Muhammad, Khan
    Zhu, Hongyin
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 70
  • [6] Breast Cancer Histopathology Image Classification Using an Ensemble of Deep Learning Models
    Hameed, Zabit
    Zahia, Sofia
    Garcia-Zapirain, Begonya
    Javier Aguirre, Jose
    Maria Vanegas, Ana
    [J]. SENSORS, 2020, 20 (16) : 1 - 17
  • [7] Enhancing Histopathology Breast Cancer Detection and Classification with the Deep Ensemble Graph Network
    Krishnappa S.G.
    Udaya Kumar Reddy K.R.
    [J]. SN Computer Science, 5 (5)
  • [8] Breast Cancer Dataset, Classification and Detection Using Deep Learning
    Iqbal, Muhammad Shahid
    Ahmad, Waqas
    Alizadehsani, Roohallah
    Hussain, Sadiq
    Rehman, Rizwan
    [J]. HEALTHCARE, 2022, 10 (12)
  • [9] Towards an Accurate Breast Cancer Classification Model based on Ensemble Learning
    Hesham, Aya
    El-Rashidy, Nora
    Rezk, Amira
    Hikal, Noha A.
    [J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (12) : 590 - 602
  • [10] Ensemble-based deep learning model for welding defect detection and classification
    Vasan, Vinod
    Sridharan, Naveen Venkatesh
    Balasundaram, Rebecca Jeyavadhanam
    Vaithiyanathan, Sugumaran
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 136