Innovative brain tumor detection using optimized deep learning techniques

被引:6
|
作者
Ramtekkar, Praveen Kumar [1 ]
Pandey, Anjana [1 ]
Pawar, Mahesh Kumar [1 ]
机构
[1] Univ Inst Technol Rajiv Gandhi Proudyogiki Vishwav, Bhopal, Madhya Pradesh, India
关键词
ACO; BCO; CNN; GA; GLCM; GWO; MRI; PSO; WOA; SEGMENTATION;
D O I
10.1007/s13198-022-01819-7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An unusual increase of nerves inside the brain, which disturbs the actual working of the brain, is called a brain tumor. It has led to the death of lots of lives. To save people from this disease timely detection and the right cure is the need of time. Finding tumor-affected cells in the human brain is a cumbersome and time- consuming task. However, the accuracy and time required to detect brain tumors is a big challenge in the arena of image processing. This research paper proposes an innovative, accurate and optimized system to detect brain tumors. The system follows the activities like, preprocessing, segmentation, feature extraction, optimization and detection. The preprocessing system uses a compound filter, which is a composition of Gaussian, mean and median filters. Threshold and histogram techniques are applied for image segmentation. Grey level co- occurrence matrix is used for feature extraction. The optimized convolution neural network (CNN) technique is applied here that uses ant colony optimization, bee colony optimization and particle swarm optimization, genetic algorithm, gray wolf optimization and whale optimization algorithm techniques for best feature selection. Detection of brain tumors is achieved through CNN classifiers. This system compares its performance with another modern technique of optimization by using accuracy, precision and recall parameters and claims the supremacy of this work. This system is implemented in the Python programming language. The brain tumor detection accuracy of this optimized system has been measured at 98.9%.
引用
收藏
页码:459 / 473
页数:15
相关论文
共 50 条
  • [21] MRI-based brain tumor detection using convolutional deep learning methods and chosen machine learning techniques
    Saeedi, Soheila
    Rezayi, Sorayya
    Keshavarz, Hamidreza
    R. Niakan Kalhori, Sharareh
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2023, 23 (01)
  • [22] MRI-based brain tumor detection using convolutional deep learning methods and chosen machine learning techniques
    Soheila Saeedi
    Sorayya Rezayi
    Hamidreza Keshavarz
    Sharareh R. Niakan Kalhori
    BMC Medical Informatics and Decision Making, 23
  • [23] MRI brain tumor detection using deep learning and machine learning approaches
    Anantharajan S.
    Gunasekaran S.
    Subramanian T.
    R V.
    Measurement: Sensors, 2024, 31
  • [24] Analysis of Optimized Machine Learning and Deep Learning Techniques for Spam Detection
    Hossain, Fahima
    Uddin, Mohammed Nasir
    Halder, Rajib Kumar
    2021 IEEE INTERNATIONAL IOT, ELECTRONICS AND MECHATRONICS CONFERENCE (IEMTRONICS), 2021, : 552 - 558
  • [25] Detection and classification of brain tumor using hybrid deep learning models
    Baiju Babu Vimala
    Saravanan Srinivasan
    Sandeep Kumar Mathivanan
    Prabhu Mahalakshmi
    Gemmachis Teshite Jayagopal
    Scientific Reports, 13
  • [26] Brain Tumor Detection and Segmentation in MR Images Using Deep Learning
    Sajid, Sidra
    Hussain, Saddam
    Sarwar, Amna
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2019, 44 (11) : 9249 - 9261
  • [27] Detection and classification of brain tumor using hybrid deep learning models
    Babu Vimala, Baiju
    Srinivasan, Saravanan
    Mathivanan, Sandeep Kumar
    Mahalakshmi
    Jayagopal, Prabhu
    Dalu, Gemmachis Teshite
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [28] Brain Tumor Detection and Segmentation in MR Images Using Deep Learning
    Sidra Sajid
    Saddam Hussain
    Amna Sarwar
    Arabian Journal for Science and Engineering, 2019, 44 : 9249 - 9261
  • [29] Multimodal brain tumor detection using multimodal deep transfer learning
    Razzaghi, Parvin
    Abbasi, Karim
    Shirazi, Mahmoud
    Rashidi, Shima
    APPLIED SOFT COMPUTING, 2022, 129
  • [30] IoT Attack Detection and Mitigation with Optimized Deep Learning Techniques
    Brindha Devi, V.
    Ranjan, Nihar M.
    Sharma, Himanshu
    CYBERNETICS AND SYSTEMS, 2024, 55 (07) : 1702 - 1728