Federated Learning Over-the-Air by Retransmissions

被引:7
|
作者
Hellstrom, Henrik [1 ]
Fodor, Viktoria [1 ]
Fischione, Carlo [1 ]
机构
[1] KTH Royal Inst Technol, Network & Syst Engn NSE & Digital Futures, S-11428 Stockholm, Sweden
关键词
Wireless communication; Atmospheric modeling; Uplink; Computational modeling; Power control; Estimation error; Federated learning; over-the-air computation; retransmissions; ANALOG FUNCTION COMPUTATION; POWER-CONTROL; DESIGN; OPTIMIZATION; AGGREGATION;
D O I
10.1109/TWC.2023.3268742
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Motivated by the increasing computational capabilities of wireless devices, as well as unprecedented levels of user- and device-generated data, new distributed machine learning (ML) methods have emerged. In the wireless community, Federated Learning (FL) is of particular interest due to its communication efficiency and its ability to deal with the problem of non-IID data. FL training can be accelerated by a wireless communication method called Over-the-Air Computation (AirComp) which harnesses the interference of simultaneous uplink transmissions to efficiently aggregate model updates. However, since AirComp utilizes analog communication, it introduces inevitable estimation errors. In this paper, we study the impact of such estimation errors on the convergence of FL and propose retransmissions as a method to improve FL accuracy over resource-constrained wireless networks. First, we derive the optimal AirComp power control scheme with retransmissions over static channels. Then, we investigate the performance of Over-the-Air FL with retransmissions and find two upper bounds on the FL loss function. Numerical results demonstrate that the power control scheme offers significant reductions in mean squared error. Additionally, we provide simulation results on MNIST classification with a deep neural network that reveals significant improvements in classification accuracy for low-SNR scenarios.
引用
收藏
页码:9143 / 9156
页数:14
相关论文
共 50 条
  • [21] Over-the-Air Federated Learning Exploiting Channel Perturbation
    Hamidi, Shayan Mohajer
    Mehrabi, Mohammad
    Khandani, Amir K.
    Gunduz, Deniz
    2022 IEEE 23RD INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATION (SPAWC), 2022,
  • [22] Over-the-Air Federated Learning via Weighted Aggregation
    Azimi-Abarghouyi, Seyed Mohammad
    Tassiulas, Leandros
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (12) : 18240 - 18253
  • [23] Asynchronous Federated Learning via Over-the-air Computation
    Zheng, Zijian
    Deng, Yansha
    Liu, Xiaonan
    Nallanathan, Arumugam
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 1345 - 1350
  • [24] Over-the-Air Federated Learning from Heterogeneous Data
    Sery, Tomer
    Shlezinger, Nir
    Cohen, Kobi
    Eldar, Yonina
    IEEE Transactions on Signal Processing, 2021, 69 : 3796 - 3811
  • [25] Federated Edge Learning With Misaligned Over-the-Air Computation
    Shao, Yulin
    Gunduz, Deniz
    Liew, Soung Chang
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (06) : 3951 - 3964
  • [26] ROBUST FEDERATED LEARNING VIA OVER-THE-AIR COMPUTATION
    Sifaou, Houssem
    Li, Geoffrey Ye
    2022 IEEE 32ND INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2022,
  • [27] Over-the-Air Federated Multi-Task Learning
    Ma, Haoming
    Yuan, Xiaojun
    Fan, Dian
    Ding, Zhi
    Wang, Xin
    Fang, Jun
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 5184 - 5189
  • [28] Over-the-Air Federated Learning From Heterogeneous Data
    Sery, Tomer
    Shlezinger, Nir
    Cohen, Kobi
    Eldar, Yonina C.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 3796 - 3811
  • [29] Over-the-Air Federated Edge Learning With Hierarchical Clustering
    Aygun, Ozan
    Kazemi, Mohammad
    Gunduz, Deniz
    Duman, Tolga M.
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (12) : 17856 - 17871
  • [30] Cloud-RAN Over-the-Air Federated Learning
    Ma, Haoming
    Yuan, Xiaojun
    Ding, Zhi
    ICC 2024 - IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2024, : 4257 - 4262