Black Ice Classification with Hyperspectral Imaging and Deep Learning

被引:3
|
作者
Bhattacharyya, Chaitali [1 ]
Kim, Sungho [1 ]
机构
[1] Yeungnam Univ, Dept Elect Engn, 280 Daehak Ro, Gyongsan 38541, South Korea
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 21期
基金
新加坡国家研究基金会;
关键词
black ice; convolutional neural network; hyperspectral imaging; image classification; principal component analysis; NETWORKS;
D O I
10.3390/app132111977
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
With the development of new technologies inside car mechanisms with various sensors connected to the IoT, a new generation of automation is attracting attention. However, there are still some factors that are difficult to detect. Among them, one of the highest risk factors is black ice. A road covered with black ice, which is hard to see from a distance, is not only the cause of damage to vehicles passing over the spot, but it also puts lives at risk. Hence, the detection of black ice is essential. A lot of research has been done on this topic with various sensors and methods. However, hyperspectral imaging has not been used for this particular purpose. Therefore, in this paper, black ice classification has been performed with the help of hyperspectral imaging in collaboration with a deep learning model for the first time. With abundant spectral and spatial information, hyperspectral imaging is a good way to analyze any material. In this paper, a 2D-3D Convolutional Neural Network (CNN) has been used to classify hyperspectral images of black ice. The spectral data were preprocessed, and the dimension of the image cube was reduced with the help of Principal Component Analysis (PCA). The proposed method was then compared with the existing method for better evaluation.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Probabilistic deep metric learning for hyperspectral image classification
    Wang, Chengkun
    Zheng, Wenzhao
    Sun, Xian
    Zhou, Jie
    Lu, Jiwen
    PATTERN RECOGNITION, 2025, 157
  • [32] Research on deep learning models for hyperspectral image classification
    Pu, Shengliang
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2023, 52 (01):
  • [33] Efficient classification of the hyperspectral images using deep learning
    Simranjit Singh
    Singara Singh Kasana
    Multimedia Tools and Applications, 2018, 77 : 27061 - 27074
  • [34] Deep Learning for Hyperspectral Image Classification on Embedded Platforms
    Balakrishnan, Siddharth
    Langerman, David
    Gretok, Evan
    George, Alan D.
    2018 IEEE THIRD INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, APPLICATIONS AND SYSTEMS (IPAS), 2018, : 187 - 191
  • [35] Deep Learning-Based Classification of Hyperspectral Data
    Chen, Yushi
    Lin, Zhouhan
    Zhao, Xing
    Wang, Gang
    Gu, Yanfeng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) : 2094 - 2107
  • [36] DEEP MANIFOLD LEARNING NETWORK FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Li, Zhengying
    Huang, Hong
    Pu, Chunyu
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 2021 - 2024
  • [37] Review of Hyperspectral Image Classification Based on Deep Learning
    Liu, Yujuan
    Hao, Aoxing
    Liu, Yanda
    Liu, Chunyu
    Zhang, Zhiyong
    Cao, Yiming
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2024, 38 (14)
  • [38] Deep Learning With Attribute Profiles for Hyperspectral Image Classification
    Aptoula, Erchan
    Ozdemir, Murat Can
    Yanikoglu, Berrin
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (12) : 1970 - 1974
  • [39] Efficient classification of the hyperspectral images using deep learning
    Singh, Simranjit
    Kasana, Singara Singh
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (20) : 27061 - 27074
  • [40] Learning a Deep Similarity Network for Hyperspectral Image Classification
    Yang, Bing
    Li, Hong
    Guo, Ziyang
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 1482 - 1496