A TiO2 nanorod and perylene diimide based inorganic/organic nanoheterostructure photoanode for photoelectrochemical urea oxidation

被引:4
|
作者
Bezboruah, Jasmine [1 ]
Sanke, Devendra Mayurdhwaj [1 ]
Munde, Ajay Vinayakrao [1 ]
Bhattad, Palak Trilochand [1 ]
Karmakar, Himadri Shekhar [1 ]
Zade, Sanjio S. [1 ]
机构
[1] Indian Inst Sci Educ & Res IISER Kolkata, Ctr Adv Funct Mat, Dept Chem Sci, Nadia 741246, W Bengal, India
来源
NANOSCALE ADVANCES | 2023年 / 5卷 / 23期
关键词
DOPED TIO2; WATER; NANOPARTICLES; ELECTROOXIDATION; HETEROSTRUCTURE; ABSORPTION; MOBILITY; SPECTRA; SURFACE; DYE;
D O I
10.1039/d3na00294b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Visible light-driven photoelectrochemical (PEC) urea oxidation using inorganic/organic nano-heterostructure (NH) photoanodes is an attractive method for hydrogen (H-2) production. In this article, inorganic/organic NHs (TiO2/PDIEH) consisting of a N,N-bis(2-ethylhexyl)perylene-3,4,9,10-tetracarboxylic diimide (PDIEH) thin layer over TiO2 nanorods (NRs) were fabricated for the PEC urea oxidation reaction (UOR). In these NHs, a PDIEH layer was anchored on TiO2 NR arrays using the spin-coating technique, which is beneficial for the uniform deposition of PDIEH on TiO2 NRs. Uniform deposition facilitated adequate interface contact between PDIEH and TiO2 NRs. TiO2/PDIEH NHs achieved a high current density of 1.1 mA cm(-2) at 1.96 V-RHE compared to TiO2 NRs. TiO2/PDIEH offers long-term stability under light illumination with 90.21% faradaic efficiency. TiO2/PDIEH exhibits a solar-to-hydrogen efficiency of 0.52%. This outcome opens up new opportunities for inorganic/organic NHs for high-performance PEC urea oxidation.
引用
收藏
页码:6670 / 6677
页数:8
相关论文
共 50 条
  • [41] Sequential doping strategy in rutile TiO2 nanorod for high performance photoanode
    Lee, Sang Yeon
    Lee, Young Jae
    Yoo, Il-Han
    Kim, Hyeon Woo
    Song, Hyejeong
    Heo, Soo Won
    Kalanur, Shankara S.
    Mohapatra, Gourab
    Rohma
    Ko, Hyunseok
    Seo, Hyungtak
    APPLIED SURFACE SCIENCE, 2024, 652
  • [42] The novel behavior of photoelectrochemical property of annealing TiO2 nanorod arrays
    Shangrong Chen
    Changlin Li
    Zhongyu Hou
    Journal of Materials Science, 2020, 55 : 5969 - 5981
  • [43] Surface polarization enables high charge separation in TiO2 nanorod photoanode
    Ma, Wei
    Huang, Keke
    Wu, Xiaofeng
    Wang, Meng
    Feng, Shouhua
    NANO RESEARCH, 2021, 14 (11) : 4056 - 4062
  • [44] Preparation and photoelectrochemical properties of TiO2/ZnO nanorod heterojunction arrays
    He, Ziyue
    Zhang, Wenkai
    Xie, Xin
    Guo, Jiahe
    Zhang, Xinyu
    Wang, Jingyang
    JOURNAL OF NANOPARTICLE RESEARCH, 2023, 25 (11)
  • [45] The novel behavior of photoelectrochemical property of annealing TiO2 nanorod arrays
    Chen, Shangrong
    Li, Changlin
    Hou, Zhongyu
    JOURNAL OF MATERIALS SCIENCE, 2020, 55 (14) : 5969 - 5981
  • [46] Annealing effect on the photoelectrochemical and photocatalytic performance of TiO2 nanorod arrays
    Xie, Zheng
    Shuang, Shuang
    Ma, Lingwei
    Zhu, Fei
    Liu, Xiangxuan
    Zhang, Zhengjun
    RSC ADVANCES, 2017, 7 (81): : 51382 - 51390
  • [47] TiO2/(CdS, CdSe, CdSeS) Nanorod Heterostructures and Photoelectrochemical Properties
    Luo, Jingshan
    Ma, Lin
    He, Tingchao
    Ng, Chin Fan
    Wang, Shijie
    Sun, Handong
    Fan, Hong Jin
    JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (22): : 11956 - 11963
  • [48] Preparation and photoelectrochemical properties of TiO2/ZnO nanorod heterojunction arrays
    Ziyue He
    Wenkai Zhang
    Xin Xie
    Jiahe Guo
    Xinyu Zhang
    Jingyang Wang
    Journal of Nanoparticle Research, 2023, 25
  • [49] Copper-doped perylene diimide supramolecules combined with TiO2 for efficient photoactivity
    Liang, Yu
    Gui, Wanrui
    Yang, Zhihong
    Cheng, Kang
    Zhou, Xin
    Yang, Can
    Xu, Jianmei
    Zhou, Wei
    RSC ADVANCES, 2023, 13 (18) : 11938 - 11947
  • [50] Photoelectrochemical Hydrogen Generation and Concomitant Organic Dye Oxidation under TiO2 Nanotube
    Zanoni, M. V. B.
    Guaraldo, T. T.
    ELECTROCATALYSIS 6, 2013, 50 (36): : 63 - 70