A TiO2 nanorod and perylene diimide based inorganic/organic nanoheterostructure photoanode for photoelectrochemical urea oxidation

被引:4
|
作者
Bezboruah, Jasmine [1 ]
Sanke, Devendra Mayurdhwaj [1 ]
Munde, Ajay Vinayakrao [1 ]
Bhattad, Palak Trilochand [1 ]
Karmakar, Himadri Shekhar [1 ]
Zade, Sanjio S. [1 ]
机构
[1] Indian Inst Sci Educ & Res IISER Kolkata, Ctr Adv Funct Mat, Dept Chem Sci, Nadia 741246, W Bengal, India
来源
NANOSCALE ADVANCES | 2023年 / 5卷 / 23期
关键词
DOPED TIO2; WATER; NANOPARTICLES; ELECTROOXIDATION; HETEROSTRUCTURE; ABSORPTION; MOBILITY; SPECTRA; SURFACE; DYE;
D O I
10.1039/d3na00294b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Visible light-driven photoelectrochemical (PEC) urea oxidation using inorganic/organic nano-heterostructure (NH) photoanodes is an attractive method for hydrogen (H-2) production. In this article, inorganic/organic NHs (TiO2/PDIEH) consisting of a N,N-bis(2-ethylhexyl)perylene-3,4,9,10-tetracarboxylic diimide (PDIEH) thin layer over TiO2 nanorods (NRs) were fabricated for the PEC urea oxidation reaction (UOR). In these NHs, a PDIEH layer was anchored on TiO2 NR arrays using the spin-coating technique, which is beneficial for the uniform deposition of PDIEH on TiO2 NRs. Uniform deposition facilitated adequate interface contact between PDIEH and TiO2 NRs. TiO2/PDIEH NHs achieved a high current density of 1.1 mA cm(-2) at 1.96 V-RHE compared to TiO2 NRs. TiO2/PDIEH offers long-term stability under light illumination with 90.21% faradaic efficiency. TiO2/PDIEH exhibits a solar-to-hydrogen efficiency of 0.52%. This outcome opens up new opportunities for inorganic/organic NHs for high-performance PEC urea oxidation.
引用
收藏
页码:6670 / 6677
页数:8
相关论文
共 50 条
  • [31] Visible-light-driven photoelectrochemical water oxidation with Al doped TiO2 nanorod arrays
    Lu, Ranran
    Wei, Yuling
    Chen, Changlong
    Wu, Tong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 790 : 99 - 108
  • [32] A Photoelectrochemical Sensor for the Sensitive Detection of Rutin Based on a CdSe QDs Sensitized TiO2 Photoanode
    Wei, Liying
    Li, Xiaokun
    Feng, Suxiang
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2021, 16 (01): : 1 - 11
  • [33] Carbon Dot Loading and TiO2 Nanorod Length Dependence of Photoelectrochemical Properties in Carbon Dot/TiO2 Nanorod Array Nanocomposites
    Bian, Juncao
    Huang, Chao
    Wang, Lingyun
    Hung, TakFu
    Daoud, Walid A.
    Zhang, Ruiqin
    ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (07) : 4883 - 4890
  • [34] A photoelectrochemical methanol fuel cell based on aligned TiO2 nanorods decorated graphene photoanode
    Li, Xinyuan
    Wang, Guowen
    Jing, Lin
    Ni, Wei
    Yan, Huan
    Chen, Chao
    Yan, Yi-Ming
    CHEMICAL COMMUNICATIONS, 2016, 52 (12) : 2533 - 2536
  • [35] In Situ Transition of a Nickel Metal-Organic Framework on TiO2 Photoanode towards Urea Photoelectrolysis
    Ren, Jie
    Yang, Pingping
    Wang, Liuliu
    Chen, Hongyu
    Lu, Xingyu
    Yang, Qing
    Zou, Li
    Huang, Cheng
    Xie, Jiale
    CATALYSTS, 2023, 13 (04)
  • [36] Surfactant and TiO2 underlayer derived porous hematite nanoball array photoanode for enhanced photoelectrochemical water oxidation
    Shinde, Pravin S.
    Mahadik, Mahadeo A.
    Lee, Su Yong
    Ryu, Jungho
    Choi, Sun Hee
    Jang, Jum Suk
    CHEMICAL ENGINEERING JOURNAL, 2017, 320 : 81 - 92
  • [38] Hierarchical photoanode of rutile TiO2 nanorods coupled with anatase TiO2 nanosheets array for photoelectrochemical application
    Yao, Huizhen
    Fu, Wuyou
    Liu, Li
    Li, Xue
    Ding, Dong
    Su, Pengyu
    Feng, Shuang
    Yang, Haibin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 680 : 206 - 211
  • [39] Influence of oxygen pressure to photoelectrochemical oxidation CI direct black 22 on TiO2 nanotube array photoanode
    Isaev, A. B.
    Shabanov, N. S.
    Orudzhev, F. F.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2018, 15 (08) : 1609 - 1618
  • [40] Surface polarization enables high charge separation in TiO2 nanorod photoanode
    Wei Ma
    Keke Huang
    Xiaofeng Wu
    Meng Wang
    Shouhua Feng
    Nano Research, 2021, 14 : 4056 - 4062