Submodular Maximization With Limited Function Access

被引:1
|
作者
Downie, Andrew [1 ]
Gharesifard, Bahman [2 ]
Smith, Stephen L. [1 ]
机构
[1] Univ Waterloo, Elect & Comp Engn, Waterloo, ON N2L 3G1, Canada
[2] Univ Calif Los Angeles, Dept Elect & Comp Engn, K7L3N6, Los Angeles, CA USA
基金
加拿大自然科学与工程研究理事会;
关键词
Autonomous systems; optimization algorithms; sensor networks; submodular maximization; PLACEMENT OPTIMIZATION; ALGORITHMS;
D O I
10.1109/TAC.2022.3226713
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, we consider a class of submodular maximization problems in which decision-makers have limited access to the objective function. We explore scenarios where the decision-maker can observe only pairwise information, i.e., can evaluate the objective function on sets of size two. We begin with a negative result that no algorithm using only k-wise information can guarantee performance better than k/n. We present two algorithms that utilize only pairwise information about the function and characterize their performance relative to the optimal, which depends on the curvature of the submodular function. Additionally, if the submodular function possess a property called supermodularity of conditioning, then we can provide a method to bound the performance based purely on pairwise information. The proposed algorithms offer significant computational speedups over a traditional greedy strategy. A by-product of our study is the introduction of two new notions of curvature, the $k$-Marginal Curvature and the k-Cardinality Curvature. Finally, we present experiments highlighting the performance of our proposed algorithms in terms of approximation and time complexity.
引用
收藏
页码:5522 / 5535
页数:14
相关论文
共 50 条
  • [1] On Distributed Submodular Maximization with Limited Information
    Gharesifard, Bahman
    Smith, Stephen L.
    2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 1048 - 1053
  • [2] Distributed Submodular Maximization With Limited Information
    Gharesifard, Bahman
    Smith, Stephen L.
    IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2018, 5 (04): : 1635 - 1645
  • [3] ORACLE COMPLEXITY OF SUBMODULAR FUNCTION MAXIMIZATION
    KOVALEV, MM
    MOSHCHENSKY, AV
    DOKLADY AKADEMII NAUK BELARUSI, 1992, 36 (02): : 111 - 114
  • [4] Robust monotone submodular function maximization
    Orlin, James B.
    Schulz, Andreas S.
    Udwani, Rajan
    MATHEMATICAL PROGRAMMING, 2018, 172 (1-2) : 505 - 537
  • [5] Resilient Monotone Submodular Function Maximization
    Tzoumas, Vasileios
    Gatsis, Konstantinos
    Jadbabaie, Ali
    Pappas, George J.
    2017 IEEE 56TH ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2017,
  • [6] Streaming Algorithms for Submodular Function Maximization
    Chekuri, Chandra
    Gupta, Shalmoli
    Quanrud, Kent
    AUTOMATA, LANGUAGES, AND PROGRAMMING, PT I, 2015, 9134 : 318 - 330
  • [7] Robust Monotone Submodular Function Maximization
    Orlin, James B.
    Schulz, Andreas S.
    Udwani, Rajan
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, IPCO 2016, 2016, 9682 : 312 - 324
  • [8] Robust monotone submodular function maximization
    James B. Orlin
    Andreas S. Schulz
    Rajan Udwani
    Mathematical Programming, 2018, 172 : 505 - 537
  • [9] Generalized budgeted submodular set function maximization
    Cellinese, Francesco
    D'Angelo, Gianlorenzo
    Monaco, Gianpiero
    Velaj, Yllka
    INFORMATION AND COMPUTATION, 2021, 281
  • [10] Submodular Function Maximization for Group Elevator Scheduling
    Ramalingam, Srikumar
    Raghunathan, Arvind U.
    Nikovski, Daniel
    TWENTY-SEVENTH INTERNATIONAL CONFERENCE ON AUTOMATED PLANNING AND SCHEDULING, 2017, : 233 - 241