Robust monotone submodular function maximization

被引:0
|
作者
James B. Orlin
Andreas S. Schulz
Rajan Udwani
机构
[1] M.I.T.,
来源
Mathematical Programming | 2018年 / 172卷
关键词
90;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a robust formulation, introduced by Krause et al. (J Artif Intell Res 42:427–486, 2011), of the classical cardinality constrained monotone submodular function maximization problem, and give the first constant factor approximation results. The robustness considered is w.r.t. adversarial removal of up to τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} elements from the chosen set. For the fundamental case of τ=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau =1$$\end{document}, we give a deterministic (1-1/e)-1/Θ(m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1-1/e)-1/\varTheta (m)$$\end{document} approximation algorithm, where m is an input parameter and number of queries scale as O(nm+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^{m+1})$$\end{document}. In the process, we develop a deterministic (1-1/e)-1/Θ(m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1-1/e)-1/\varTheta (m)$$\end{document} approximate greedy algorithm for bi-objective maximization of (two) monotone submodular functions. Generalizing the ideas and using a result from Chekuri et al. (in: FOCS 10, IEEE, pp 575–584, 2010), we show a randomized (1-1/e)-ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1-1/e)-\epsilon $$\end{document} approximation for constant τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} and ϵ≤1Ω~(τ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon \le \frac{1}{\tilde{\varOmega }(\tau )}$$\end{document}, making O(n1/ϵ3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^{1/\epsilon ^3})$$\end{document} queries. Further, for τ≪k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau \ll \sqrt{k}$$\end{document}, we give a fast and practical 0.387 algorithm. Finally, we also give a black box result result for the much more general setting of robust maximization subject to an Independence System.
引用
收藏
页码:505 / 537
页数:32
相关论文
共 50 条
  • [1] Robust monotone submodular function maximization
    Orlin, James B.
    Schulz, Andreas S.
    Udwani, Rajan
    MATHEMATICAL PROGRAMMING, 2018, 172 (1-2) : 505 - 537
  • [2] Robust Monotone Submodular Function Maximization
    Orlin, James B.
    Schulz, Andreas S.
    Udwani, Rajan
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, IPCO 2016, 2016, 9682 : 312 - 324
  • [3] Resilient Monotone Submodular Function Maximization
    Tzoumas, Vasileios
    Gatsis, Konstantinos
    Jadbabaie, Ali
    Pappas, George J.
    2017 IEEE 56TH ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2017,
  • [4] Monotone k-Submodular Function Maximization with Size Constraints
    Ohsaka, Naoto
    Yoshida, Yuichi
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [5] Non-Monotone DR-Submodular Function Maximization
    Soma, Tasuku
    Yoshida, Yuichi
    THIRTY-FIRST AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 898 - 904
  • [6] Multi-Pass Streaming Algorithms for Monotone Submodular Function Maximization
    Huang, Chien-Chung
    Kakimura, Naonori
    THEORY OF COMPUTING SYSTEMS, 2022, 66 (01) : 354 - 394
  • [7] Multi-Pass Streaming Algorithms for Monotone Submodular Function Maximization
    Chien-Chung Huang
    Naonori Kakimura
    Theory of Computing Systems, 2022, 66 : 354 - 394
  • [8] Robust Sequence Submodular Maximization
    Sallam, Gamal
    Zheng, Zizhan
    Wu, Jie
    Ji, Bo
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [9] Robust Adaptive Submodular Maximization
    Tang, Shaojie
    INFORMS JOURNAL ON COMPUTING, 2022, 34 (06) : 3277 - 3291
  • [10] Private non-monotone submodular maximization
    Xin Sun
    Gaidi Li
    Yapu Zhang
    Zhenning Zhang
    Journal of Combinatorial Optimization, 2022, 44 : 3212 - 3232