Robust monotone submodular function maximization

被引:0
|
作者
James B. Orlin
Andreas S. Schulz
Rajan Udwani
机构
[1] M.I.T.,
来源
Mathematical Programming | 2018年 / 172卷
关键词
90;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a robust formulation, introduced by Krause et al. (J Artif Intell Res 42:427–486, 2011), of the classical cardinality constrained monotone submodular function maximization problem, and give the first constant factor approximation results. The robustness considered is w.r.t. adversarial removal of up to τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} elements from the chosen set. For the fundamental case of τ=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau =1$$\end{document}, we give a deterministic (1-1/e)-1/Θ(m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1-1/e)-1/\varTheta (m)$$\end{document} approximation algorithm, where m is an input parameter and number of queries scale as O(nm+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^{m+1})$$\end{document}. In the process, we develop a deterministic (1-1/e)-1/Θ(m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1-1/e)-1/\varTheta (m)$$\end{document} approximate greedy algorithm for bi-objective maximization of (two) monotone submodular functions. Generalizing the ideas and using a result from Chekuri et al. (in: FOCS 10, IEEE, pp 575–584, 2010), we show a randomized (1-1/e)-ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1-1/e)-\epsilon $$\end{document} approximation for constant τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} and ϵ≤1Ω~(τ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon \le \frac{1}{\tilde{\varOmega }(\tau )}$$\end{document}, making O(n1/ϵ3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^{1/\epsilon ^3})$$\end{document} queries. Further, for τ≪k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau \ll \sqrt{k}$$\end{document}, we give a fast and practical 0.387 algorithm. Finally, we also give a black box result result for the much more general setting of robust maximization subject to an Independence System.
引用
收藏
页码:505 / 537
页数:32
相关论文
共 50 条
  • [11] Partial-monotone adaptive submodular maximization
    Shaojie Tang
    Jing Yuan
    Journal of Combinatorial Optimization, 2023, 45
  • [12] Non-monotone Sequential Submodular Maximization
    Tang, Shaojie
    Yuan, Jing
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 14, 2024, : 15284 - 15291
  • [13] Private non-monotone submodular maximization
    Sun, Xin
    Li, Gaidi
    Zhang, Yapu
    Zhang, Zhenning
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2022, 44 (05) : 3212 - 3232
  • [14] Partial-monotone adaptive submodular maximization
    Tang, Shaojie
    Yuan, Jing
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2023, 45 (01)
  • [15] Non-Monotone Adaptive Submodular Maximization
    Gotovos, Alkis
    Karbasi, Amin
    Krause, Andreas
    PROCEEDINGS OF THE TWENTY-FOURTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI), 2015, : 1996 - 2003
  • [16] Distributionally Robust Submodular Maximization
    Staib, Matthew
    Wilder, Bryan
    Jegelka, Stefanie
    22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89 : 506 - 516
  • [17] Dynamic Non-monotone Submodular Maximization
    Banihashem, Kiarash
    Biabani, Leyla
    Goudarzi, Samira
    Hajiaghayi, MohammadTaghi
    Jabbarzade, Peyman
    Monemizadeh, Morteza
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [18] Multi-Agent Maximization of a Monotone Submodular Function via Maximum Consensus
    Rezazadeh, Navid
    Kia, Solmaz S.
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 1238 - 1243
  • [19] Analyzing Residual Random Greedy for monotone submodular maximization
    Berczi, Kristof
    Chandrasekaran, Karthekeyan
    Kiraly, Tamas
    Pillai, Aditya
    INFORMATION PROCESSING LETTERS, 2023, 180
  • [20] Group fairness in non-monotone submodular maximization
    Jing Yuan
    Shaojie Tang
    Journal of Combinatorial Optimization, 2023, 45