Submodular Maximization With Limited Function Access

被引:1
|
作者
Downie, Andrew [1 ]
Gharesifard, Bahman [2 ]
Smith, Stephen L. [1 ]
机构
[1] Univ Waterloo, Elect & Comp Engn, Waterloo, ON N2L 3G1, Canada
[2] Univ Calif Los Angeles, Dept Elect & Comp Engn, K7L3N6, Los Angeles, CA USA
基金
加拿大自然科学与工程研究理事会;
关键词
Autonomous systems; optimization algorithms; sensor networks; submodular maximization; PLACEMENT OPTIMIZATION; ALGORITHMS;
D O I
10.1109/TAC.2022.3226713
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, we consider a class of submodular maximization problems in which decision-makers have limited access to the objective function. We explore scenarios where the decision-maker can observe only pairwise information, i.e., can evaluate the objective function on sets of size two. We begin with a negative result that no algorithm using only k-wise information can guarantee performance better than k/n. We present two algorithms that utilize only pairwise information about the function and characterize their performance relative to the optimal, which depends on the curvature of the submodular function. Additionally, if the submodular function possess a property called supermodularity of conditioning, then we can provide a method to bound the performance based purely on pairwise information. The proposed algorithms offer significant computational speedups over a traditional greedy strategy. A by-product of our study is the introduction of two new notions of curvature, the $k$-Marginal Curvature and the k-Cardinality Curvature. Finally, we present experiments highlighting the performance of our proposed algorithms in terms of approximation and time complexity.
引用
收藏
页码:5522 / 5535
页数:14
相关论文
共 50 条
  • [21] Distributed Submodular Maximization
    Mirzasoleiman, Baharan
    Karbasi, Amin
    Sarkar, Rik
    Krause, Andreas
    JOURNAL OF MACHINE LEARNING RESEARCH, 2016, 17
  • [22] Differentiable Submodular Maximization
    Tschiatschek, Sebastian
    Sahin, Aytunc
    Krause, Andreas
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 2731 - 2738
  • [23] Stochastic Submodular Maximization
    Asadpour, Arash
    Nazerzadeh, Hamid
    Saberi, Amin
    INTERNET AND NETWORK ECONOMICS, PROCEEDINGS, 2008, 5385 : 477 - 489
  • [24] Monotone k-Submodular Function Maximization with Size Constraints
    Ohsaka, Naoto
    Yoshida, Yuichi
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [25] Approximation Guarantees for Deterministic Maximization of Submodular Function with a Matroid Constraint
    Sun, Xin
    Xu, Dachuan
    Guo, Longkun
    Li, Min
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, TAMC 2020, 2020, 12337 : 205 - 214
  • [26] Approximation Algorithm and Applications for Connected Submodular Function Maximization Problems
    Wang, Ziming
    Li, Jing
    Xue, He
    Xu, Wenzheng
    Liang, Weifa
    Xu, Zichuan
    Peng, Jian
    Zhou, Pan
    Jia, Xiaohua
    Das, Sajal K.
    IEEE-ACM TRANSACTIONS ON NETWORKING, 2024,
  • [27] Distributed strategy selection: A submodular set function maximization approach
    Rezazadeh, Navid
    Kia, Solmaz S.
    AUTOMATICA, 2023, 153
  • [28] Parallelizing Greedy for Submodular Set Function Maximization in Matroids and Beyond
    Chekuri, Chandra
    Quanrud, Kent
    PROCEEDINGS OF THE 51ST ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '19), 2019, : 78 - 89
  • [29] Simultaneous Approximation of Multi-criteria Submodular Function Maximization
    Du D.-L.
    Li Y.
    Xiu N.-H.
    Xu D.-C.
    Journal of the Operations Research Society of China, 2014, 2 (3) : 271 - 290
  • [30] IMPROVED RANDOMIZED ALGORITHM FOR k-SUBMODULAR FUNCTION MAXIMIZATION
    Oshima, Hiroki
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2021, 35 (01) : 1 - 22