PseudoDepth-SLR: Generating Depth Data for Sign Language Recognition

被引:0
|
作者
Sarhan, Noha [1 ]
Willruth, Jan M. [1 ]
Fritnrop, Simone [1 ]
机构
[1] Univ Hamburg, Vogt Kolln Str 30, D-22527 Hamburg, Germany
来源
关键词
Sign Language Recognition; Deep Learning; Depth Data; 3D Convolutional Neural Networks;
D O I
10.1007/978-3-031-44137-0_5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we investigate the significance of depth data in Sign Language Recognition (SLR) and propose a novel approach for generating pseudo depth information from RGB data to boost performance and enable generalizability in scenarios where depth data is not available. For the depth generation, we rely on an approach that utilizes vision transformers as a backbone for depth prediction. We examine the effect of pseudo depth data on the performance of automatic SLR systems and conduct a comparative analysis between the generated pseudo depth data and actual depth data to evaluate their effectiveness and demonstrate the value of depth data in accurately recognizing sign language gestures. Our experiments show that our proposed generative depth architecture outperforms an RGB-only counterpart.
引用
收藏
页码:51 / 62
页数:12
相关论文
共 50 条
  • [1] A Review on Sign Language Recognition (SLR) System: ML and DL for SLR
    Das, Soumen
    Biswas, Saroj Kr
    Chakraborty, Manomita
    Purkayastha, Biswajit
    2021 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS, SMART AND GREEN TECHNOLOGIES (ICISSGT 2021), 2021, : 177 - 182
  • [2] Survey of Hidden Markov Models (HMMs) for Sign Language Recognition (SLR)
    Sandjaja, Iwan
    Alsharoa, Ahmad
    Wunsch, Donald, II
    Liu, Jian
    2024 IEEE 7TH INTERNATIONAL CONFERENCE ON INDUSTRIAL CYBER-PHYSICAL SYSTEMS, ICPS 2024, 2024,
  • [3] Sign Language Recognition using Depth Images
    Zheng, Lihong
    Liang, Bin
    2016 14TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV), 2016,
  • [4] Isolated Sign Language Recognition with Depth Cameras
    Oszust, Mariusz
    Krupski, Jakub
    KNOWLEDGE-BASED AND INTELLIGENT INFORMATION & ENGINEERING SYSTEMS (KSE 2021), 2021, 192 : 2085 - 2094
  • [5] A position and rotation invariant framework for sign language recognition (SLR) using Kinect
    Kumar, Pradeep
    Saini, Rajkumar
    Roy, Partha Pratim
    Dogra, Debi Prosad
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (07) : 8823 - 8846
  • [6] TIM-SLR: a lightweight network for video isolated sign language recognition
    Fei Wang
    Libo Zhang
    Hao Yan
    Shuai Han
    Neural Computing and Applications, 2023, 35 : 22265 - 22280
  • [7] A position and rotation invariant framework for sign language recognition (SLR) using Kinect
    Pradeep Kumar
    Rajkumar Saini
    Partha Pratim Roy
    Debi Prosad Dogra
    Multimedia Tools and Applications, 2018, 77 : 8823 - 8846
  • [8] TIM-SLR: a lightweight network for video isolated sign language recognition
    Wang, Fei
    Zhang, Libo
    Yan, Hao
    Han, Shuai
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (30): : 22265 - 22280
  • [9] Real-time Sign Language Letter and Word Recognition from Depth Data
    Uebersax, Dominique
    Gall, Juergen
    Van den Bergh, Michael
    Van Gool, Luc
    2011 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCV WORKSHOPS), 2011,
  • [10] SC2SLR: Skeleton-based Contrast for Sign Language Recognition
    Lyu, Silu
    2024 5TH INTERNATIONAL CONFERENCE ON COMPUTING, NETWORKS AND INTERNET OF THINGS, CNIOT 2024, 2024, : 404 - 410