Parallel and totally umbilical hypersurfaces of the four-dimensional Thurston geometry Sol04

被引:2
|
作者
D'haene, Marie [1 ,3 ]
Inoguchi, Jun-ichi [2 ]
Van der Veken, Joeri [1 ]
机构
[1] Dept Math, KU Leuven, Leuven, Belgium
[2] Hokkaido Univ, Dept Math, Sapporo, Japan
[3] Katholieke Univ Leuven, Dept Math, Celestijnenlaan 200 B Box 2400, B-3001 Leuven, Belgium
基金
中国国家自然科学基金;
关键词
Codazzi hypersurface; parallel second fundamental form; solvable lie group; Thurston geometry; totally geodesic; totally umbilical; SURFACES; SUBMANIFOLDS;
D O I
10.1002/mana.202300372
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study hypersurfaces of the four-dimensional Thurston geometry Sol(0)(4), which is a Riemannian homogeneous space and a solvable Lie group. In particular, we give a full classification of hypersurfaces whose second fundamental form is a Codazzi tensor-including totally geodesic hypersurfaces and hyper surfaces with parallel second fundamental form-and of totally umbilical hypersurfaces of Sol(0)(4).We also give a closed expression for the Riemann curvature tensor of Sol(0)(4),using two integrable complex structures.
引用
收藏
页码:1879 / 1891
页数:13
相关论文
共 50 条
  • [31] Parallel Turing machines on four-dimensional input tapes
    Ito, Takao
    Sakamoto, Makoto
    Taniue, Ayumi
    Matsukawa, Tomoya
    Uchida, Yasuo
    Furutani, Hiroshi
    Kono, Michio
    ARTIFICIAL LIFE AND ROBOTICS, 2010, 15 (02) : 212 - 215
  • [32] Parallel and totally geodesic hypersurfaces of non-reductive homogeneous four-manifolds
    Calvaruso, Giovanni
    Storm, Reinier
    van der Veken, Joeri
    MATHEMATISCHE NACHRICHTEN, 2020, 293 (09) : 1707 - 1729
  • [33] On the Problem of Describing Holomorphically Homogeneous Real Hypersurfaces of Four-Dimensional Complex Spaces
    A. V. Loboda
    Proceedings of the Steklov Institute of Mathematics, 2020, 311 : 180 - 198
  • [34] The Gauss-Kronecker curvature of minimal hypersurfaces in four-dimensional space forms
    Asperti, A. C.
    Chaves, R. M. B.
    Sousa, L. A. M., Jr.
    MATHEMATISCHE ZEITSCHRIFT, 2011, 267 (3-4) : 523 - 533
  • [35] On the Problem of Describing Holomorphically Homogeneous Real Hypersurfaces of Four-Dimensional Complex Spaces
    Loboda, A. V.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2020, 311 (01) : 180 - 198
  • [36] Spin coefficients for four-dimensional neutral metrics, and null geometry
    Law, Peter R.
    JOURNAL OF GEOMETRY AND PHYSICS, 2009, 59 (08) : 1087 - 1126
  • [37] Applications of a Particular Four-Dimensional Projective Geometry to Galactic Dynamics
    Rubin, Jacques L.
    GALAXIES, 2018, 6 (03):
  • [38] Giuseppe Veronese's studies on four-dimensional descriptive geometry
    Freguglia, P
    TOWARDS A HISTORY OF CONSTRUCTION, 2002, : 253 - 262
  • [39] GEOMETRY-DRIVEN FINITE ELEMENT FOR FOUR-DIMENSIONAL PRINTING
    Kwok, Tsz-Ho
    PROCEEDINGS OF THE ASME 12TH INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE - 2017, VOL 1, 2017,
  • [40] Geometry of complex instability and escape in four-dimensional symplectic maps
    Stoeber, Jonas
    Baecker, Arnd
    PHYSICAL REVIEW E, 2021, 103 (04)