Parallel and totally umbilical hypersurfaces of the four-dimensional Thurston geometry Sol04

被引:2
|
作者
D'haene, Marie [1 ,3 ]
Inoguchi, Jun-ichi [2 ]
Van der Veken, Joeri [1 ]
机构
[1] Dept Math, KU Leuven, Leuven, Belgium
[2] Hokkaido Univ, Dept Math, Sapporo, Japan
[3] Katholieke Univ Leuven, Dept Math, Celestijnenlaan 200 B Box 2400, B-3001 Leuven, Belgium
基金
中国国家自然科学基金;
关键词
Codazzi hypersurface; parallel second fundamental form; solvable lie group; Thurston geometry; totally geodesic; totally umbilical; SURFACES; SUBMANIFOLDS;
D O I
10.1002/mana.202300372
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study hypersurfaces of the four-dimensional Thurston geometry Sol(0)(4), which is a Riemannian homogeneous space and a solvable Lie group. In particular, we give a full classification of hypersurfaces whose second fundamental form is a Codazzi tensor-including totally geodesic hypersurfaces and hyper surfaces with parallel second fundamental form-and of totally umbilical hypersurfaces of Sol(0)(4).We also give a closed expression for the Riemann curvature tensor of Sol(0)(4),using two integrable complex structures.
引用
收藏
页码:1879 / 1891
页数:13
相关论文
共 50 条
  • [21] ON CONFORMAL GEOMETRY OF FOUR-DIMENSIONAL GENERALIZED SYMMETRIC SPACES
    Zaeim, Amirhesam
    Aryanejad, Yadollah
    Gheitasi, Mokhtar
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2023, 65 (01): : 135 - 153
  • [22] Rotational Hypersurfaces Satisfying ΔIR = AR in the Four-Dimensional Euclidean Space
    Guler, Erhan
    JOURNAL OF POLYTECHNIC-POLITEKNIK DERGISI, 2021, 24 (02): : 517 - 520
  • [23] Balanced presentations of the trivial group and four-dimensional geometry
    Lishak, Boris
    Nabutovsky, Alexander
    JOURNAL OF TOPOLOGY AND ANALYSIS, 2017, 9 (01) : 15 - 25
  • [24] Homogeneity for Surfaces in Four-Dimensional Vector Space Geometry
    Rolf Walter
    Geometriae Dedicata, 1998, 71 : 129 - 178
  • [25] FOUR-DIMENSIONAL PARAKAHLER LIE ALGEBRAS: CLASSIFICATION AND GEOMETRY
    Calvaruso, Giovanni
    HOUSTON JOURNAL OF MATHEMATICS, 2015, 41 (03): : 733 - 748
  • [26] On the Finsler Geometry of Four-Dimensional Einstein Lie Groups
    Hosein Abedi Karimi
    Hamid Reza Salimi Moghaddam
    Iranian Journal of Science and Technology, Transactions A: Science, 2019, 43 : 1197 - 1202
  • [27] Homogeneity for surfaces in four-dimensional vector space geometry
    Walter, R
    GEOMETRIAE DEDICATA, 1998, 71 (02) : 129 - 178
  • [29] On the Finsler Geometry of Four-Dimensional Einstein Lie Groups
    Karimi, Hosein Abedi
    Moghaddam, Hamid Reza Salimi
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2019, 43 (A3): : 1197 - 1202
  • [30] Some properties of four-dimensional parallel Turing machines
    Uchida, Yasuo
    Sakamoto, Makoto
    Taniue, Ayumi
    Katamune, Ryuju
    Ito, Takao
    Furutani, Hiroshi
    Kono, Michio
    ARTIFICIAL LIFE AND ROBOTICS, 2010, 15 (04) : 385 - 388