Effect of Cementitious Capillary Crystalline Waterproofing Materials on the Mechanical and Impermeability Properties of Engineered Cementitious Composites with Microscopic Analysis

被引:7
|
作者
Tan, Yan [1 ]
Zhao, Ben [1 ]
Yu, Jiangtao [2 ]
Xiao, Henglin [1 ]
Long, Xiong [1 ]
Meng, Jian [1 ]
机构
[1] Hubei Univ Technol, Coll Civil Engn Architecture & Environm, Wuhan 430068, Peoples R China
[2] Tongji Univ, Sch Civil Engn, Shanghai 200092, Peoples R China
关键词
cementitious capillary crystalline waterproofing material; engineered cementitious composites; mechanical properties; impermeability properties; chloride ion diffusion coefficient; FLY-ASH; CONCRETE; PERFORMANCE; DURABILITY; SULFATE; SHCC; RESISTANCE; TRANSPORT; CORROSION; STRENGTH;
D O I
10.3390/polym15041013
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Building structures are prone to cracking, leakage, and corrosion under complex loads and harsh marine environments, which seriously affect their durability performance. To design cementitious composites with excellent mechanical and impermeability properties, Engineered Cementitious Composites (ECCs) doped with ultrahigh molecular weight polyethylene short-cut fibers (PE-ECCs) were used as the reference group. Different types (XYPEX-type from Canada, SY1000-type from China) and doses (0%, 0.5%, 1.0%, 1.5%, 2.0%) of Cementitious Capillary Crystalline Waterproofing materials (CCCWs) were incorporated. The effect of CCCWs on the mechanical and impermeability properties of PE-ECCs, and the microscopic changes, were investigated to determine the best type of CCCW to use and the best amount of doping. The results showed that with increasing the CCCW dosage, the effects of both CCCWs on the mechanical and impermeability properties of PE-ECC increased and then decreased, and that the best mechanical and impermeability properties of PE-ECC were achieved when the CCCW dosing was 1.0%. The mechanical properties of the PE-ECC were more obviously improved by XYPEX-type CCCW, with a compressive strength of 53.8 MPa, flexural strength of 11.8 MPa, an ultimate tensile stress of 5.56 MPa, and an ultimate tensile strain of 7.53 MPa, which were 37.95%, 53.25%, 14.17%, and 21.65% higher than those of the reference group, respectively. The effects of the two CCCWs on impermeability were comparable. CCCW-PE-ECC(X1.0%) and CCCW-PE-ECC(S1.0%) showed the smallest permeation heights, 2.6 mm and 2.8 mm, respectively. The chloride ion diffusion coefficients of CCCW-PE-ECC(X1.0%) and CCCW-PE-ECC(S1.0%) exhibited the smallest values, 0.15 x 10(-12) m(2)/s and 0.10 x 10(-12) m(2)/s, respectively. Micromorphological tests showed that the particle size of the XYPEX-type CCCW was finer, and the intensity of the diffraction peaks of C-S-H and CaCO3 of PE-ECC increased after doping with two suitable doping amounts of CCCW. The pore structure was improved, the surface of the matrix was smoother, and the degree of erosion of hydration products on the fiber surface was reduced after chloride ion penetration. XYPEX-type CCCW demonstrated a more obvious improvement in the PE-ECC pore structure.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] STUDY ON MECHANICAL PROPERTIES OF HYBRID FIBER REINFORCED ENGINEERED CEMENTITIOUS COMPOSITES
    Sridhar, Radhika
    Prasad, Ravi
    REVISTA ROMANA DE MATERIALE-ROMANIAN JOURNAL OF MATERIALS, 2019, 49 (03): : 424 - 433
  • [42] The Effect of Recycled Sand on the Tensile Properties of Engineered Cementitious Composites
    Dong, Zhifu
    Tan, Yan
    Jian, Xiangru
    Yu, Jiangtao
    Yu, Kequan
    SUSTAINABILITY, 2022, 14 (20)
  • [43] Investigations on effect of different fibers on the properties of engineered cementitious composites
    George, Mareena
    Sathyan, Dhanya
    Mini, K. M.
    MATERIALS TODAY-PROCEEDINGS, 2021, 42 : 1417 - 1421
  • [44] Development of basalt fiber engineered cementitious composites and its mechanical properties
    Xu, Mingfeng
    Song, Song
    Feng, Lei
    Zhou, Jian
    Li, Hui
    Li, Victor C.
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 266
  • [45] Research on Design, Production and Mechanical Properties of White Engineered Cementitious Composites
    Yu, Jia Huan
    Yang, En Hua
    ADVANCED COMPOSITE MATERIALS, 2011, 20 (01) : 91 - 104
  • [46] PERFORMANCE PROPERTIES OF ENGINEERED CEMENTITIOUS COMPOSITES (ECC) AS CONCRETE REPAIR MATERIALS
    Cao, W. Q.
    Fan, H.
    Zhao, T. J.
    ADVANCES IN HETEROGENEOUS MATERIAL MECHANICS 2011, 2011, : 1096 - 1099
  • [47] Evaluation of mechanical and microstructure properties of engineered cementitious composites made of zeolite
    Razavi, Seyed Mohammadhossein
    Nazarpour, Hadi
    Hosseinali Beygi, Morteza
    STRUCTURAL CONCRETE, 2021, 22 (05) : 2736 - 2747
  • [49] Mechanical Properties of Ordinary Concrete Confined with Engineered Cementitious Composites (ECC)
    Kang Y.
    Guo Z.
    Ye B.
    Pan P.
    Cailiao Daobao/Materials Reports, 2024, 38 (03):
  • [50] Mechanical Properties of Engineered Cementitious Composites with High Volume Fly Ash
    祝瑜
    杨英姿
    Journal of Wuhan University of Technology(Materials Science), 2009, (S1) : 166 - 170