Effect of Cementitious Capillary Crystalline Waterproofing Materials on the Mechanical and Impermeability Properties of Engineered Cementitious Composites with Microscopic Analysis

被引:7
|
作者
Tan, Yan [1 ]
Zhao, Ben [1 ]
Yu, Jiangtao [2 ]
Xiao, Henglin [1 ]
Long, Xiong [1 ]
Meng, Jian [1 ]
机构
[1] Hubei Univ Technol, Coll Civil Engn Architecture & Environm, Wuhan 430068, Peoples R China
[2] Tongji Univ, Sch Civil Engn, Shanghai 200092, Peoples R China
关键词
cementitious capillary crystalline waterproofing material; engineered cementitious composites; mechanical properties; impermeability properties; chloride ion diffusion coefficient; FLY-ASH; CONCRETE; PERFORMANCE; DURABILITY; SULFATE; SHCC; RESISTANCE; TRANSPORT; CORROSION; STRENGTH;
D O I
10.3390/polym15041013
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Building structures are prone to cracking, leakage, and corrosion under complex loads and harsh marine environments, which seriously affect their durability performance. To design cementitious composites with excellent mechanical and impermeability properties, Engineered Cementitious Composites (ECCs) doped with ultrahigh molecular weight polyethylene short-cut fibers (PE-ECCs) were used as the reference group. Different types (XYPEX-type from Canada, SY1000-type from China) and doses (0%, 0.5%, 1.0%, 1.5%, 2.0%) of Cementitious Capillary Crystalline Waterproofing materials (CCCWs) were incorporated. The effect of CCCWs on the mechanical and impermeability properties of PE-ECCs, and the microscopic changes, were investigated to determine the best type of CCCW to use and the best amount of doping. The results showed that with increasing the CCCW dosage, the effects of both CCCWs on the mechanical and impermeability properties of PE-ECC increased and then decreased, and that the best mechanical and impermeability properties of PE-ECC were achieved when the CCCW dosing was 1.0%. The mechanical properties of the PE-ECC were more obviously improved by XYPEX-type CCCW, with a compressive strength of 53.8 MPa, flexural strength of 11.8 MPa, an ultimate tensile stress of 5.56 MPa, and an ultimate tensile strain of 7.53 MPa, which were 37.95%, 53.25%, 14.17%, and 21.65% higher than those of the reference group, respectively. The effects of the two CCCWs on impermeability were comparable. CCCW-PE-ECC(X1.0%) and CCCW-PE-ECC(S1.0%) showed the smallest permeation heights, 2.6 mm and 2.8 mm, respectively. The chloride ion diffusion coefficients of CCCW-PE-ECC(X1.0%) and CCCW-PE-ECC(S1.0%) exhibited the smallest values, 0.15 x 10(-12) m(2)/s and 0.10 x 10(-12) m(2)/s, respectively. Micromorphological tests showed that the particle size of the XYPEX-type CCCW was finer, and the intensity of the diffraction peaks of C-S-H and CaCO3 of PE-ECC increased after doping with two suitable doping amounts of CCCW. The pore structure was improved, the surface of the matrix was smoother, and the degree of erosion of hydration products on the fiber surface was reduced after chloride ion penetration. XYPEX-type CCCW demonstrated a more obvious improvement in the PE-ECC pore structure.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Effect of polyethylene fiber content on physical and mechanical properties of engineered cementitious composites
    Wang, Yichao
    Liu, Feichi
    Yu, Jiangtao
    Dong, Fangyuan
    Ye, Junhong
    Construction and Building Materials, 2020, 251
  • [22] Effect of polyethylene fiber content on physical and mechanical properties of engineered cementitious composites
    Wang, Yichao
    Liu, Feichi
    Yu, Jiangtao
    Dong, Fangyuan
    Ye, Junhong
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 251
  • [23] Effect of morphological parameters of natural sand on mechanical properties of engineered cementitious composites
    Wu, Hao-Liang
    Yu, Jing
    Zhang, Duo
    Zheng, Jun-Xing
    Li, Victor C.
    CEMENT & CONCRETE COMPOSITES, 2019, 100 : 108 - 119
  • [24] Effect of Water-Curing Time on the Mechanical Properties of Engineered Cementitious Composites
    Zhu, Yu
    Zhang, Zhaocai
    Yao, Yan
    Guan, Xuemao
    Yang, Yingzi
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2016, 28 (11)
  • [25] Research on Cementitious Capillary Crystalline Waterproofing Coating for Underground Concrete Works
    Zhang, Yong
    Du, Xiuli
    Li, Yue
    Yang, Fumin
    Li, Zhanguo
    TRENDS IN BUILDING MATERIALS RESEARCH, PTS 1 AND 2, 2012, 450-451 : 286 - +
  • [26] Mechanical and thermal properties of green lightweight engineered cementitious composites
    Huang, Xiaoyan
    Ranade, Ravi
    Zhang, Qian
    Ni, Wen
    Li, Victor C.
    CONSTRUCTION AND BUILDING MATERIALS, 2013, 48 : 954 - 960
  • [27] Dynamic mechanical properties of basalt fiber engineered cementitious composites
    Zhang N.
    Zhou J.
    Xu M.
    Li H.
    Ma G.
    Baozha Yu Chongji/Explosion and Shock Waves, 2020, 40 (05):
  • [28] Mechanical properties of engineered cementitious composites developed with silica fume
    Arivusudar, N.
    Babu, S. Suresh
    CEMENT WAPNO BETON, 2020, 25 (04): : 282 - 291
  • [29] Mechanical Properties of PP-Based Engineered Cementitious Composites
    Abid, Sallal R.
    Shamkhi, Mohammed S.
    Mahdi, Noor S.
    Daek, Yasir H.
    2018 INTERNATIONAL CONFERENCE ON ADVANCE IN SUSTAINABLE ENGINEERING AND ITS APPLICATION (ICASEA), 2018, : 142 - 146
  • [30] Experimental study on the mechanical properties of reinforced engineered cementitious composites
    Yang, Dan
    Wang, Zhiyuan
    Guo, Rui
    Yu, Zhixiang
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2024, 20