On Certain Fermat Diophantine Functional Equations C2

被引:0
|
作者
Wang, Qiong [1 ]
Liao, Liangwen [2 ]
Chen, Wei [1 ]
机构
[1] Chongqing Univ Posts & Telecommun, Sch Sci, Chongqing 400065, Peoples R China
[2] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
Entire solution; Meromorphic solutions; Fermat type functional equations; Nevanlinna theory; MEROMORPHIC SOLUTIONS; THEOREM; MAPS;
D O I
10.1007/s40315-022-00450-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study entire solutions and meromorphic solutions of the following Fermat Diophantine functional equations h (z(1), z(2)) f + k (z(1), z(2)) g(n) = 1 in C-2 for integers n >= 2, where h (z(1), z(2)) and k (z(1), z(2)) are non-zero meromorphic functions in C-2, and show that f and g can reduce to a constant or rational function under the conditions that (kg(n))(z1) not equivalent to 0 , L((hf)(z2)) subset of L((kg(n))(z1)/(kg(n-1))) and L(f) subset of L((kg(n))(z1)/(kg(n-1))) ignoring multiplicities or counting multiplicities.
引用
收藏
页码:87 / 100
页数:14
相关论文
共 50 条