On Certain Fermat Diophantine Functional Equations in C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}^{2}$$\end{document}

被引:0
|
作者
Qiong Wang
Liangwen Liao
Wei Chen
机构
[1] Chongqing University of Posts and Telecommunications,School of Sciences
[2] Nanjing University,Department of Mathematics
关键词
Entire solution; Meromorphic solutions; Fermat type functional equations; Nevanlinna theory; 32A15; 32A22; 35F20;
D O I
10.1007/s40315-022-00450-8
中图分类号
学科分类号
摘要
In this paper, we study entire solutions and meromorphic solutions of the following Fermat Diophantine functional equations hz1,z2f+kz1,z2gn=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} h\left( z_{1}, z_{2}\right) f+k\left( z_{1}, z_{2}\right) g^{n}=1 \end{aligned}$$\end{document}in C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}^{2}$$\end{document} for integers n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2$$\end{document}, where hz1,z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h\left( z_{1}, z_{2}\right) $$\end{document} and kz1,z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\left( z_{1}, z_{2}\right) $$\end{document} are non-zero meromorphic functions in C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}^{2}$$\end{document}, and show that f and g can reduce to a constant or rational function under the conditions that (kgn)z1≢0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(kg^n)_{z_1}\not \equiv 0$$\end{document}, L(hf)z2⊆L(kgn)z1/(kgn-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {L}}\left( (hf)_{z_2}\right) \subseteq {\mathcal {L}}\left( (kg^n)_{z_1}/(kg^{n-1})\right) $$\end{document} and L(f)⊆L(kgn)z1/(kgn-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {L}}(f)\subseteq {\mathcal {L}}\left( (kg^n)_{z_1}/(kg^{n-1})\right) $$\end{document} ignoring multiplicities or counting multiplicities.
引用
收藏
页码:87 / 100
页数:13
相关论文
共 50 条