The influence of forest tree species composition on the forest height predicted from airborne laser scanning data - A case study in Latvia

被引:1
|
作者
Ivanovs, Janis [1 ]
Lazdins, Andis [1 ]
Lang, Mait [2 ,3 ]
机构
[1] Latvian State Forest Res Inst Silava, Riga Str 111, LV-2169 Salaspils, Latvia
[2] Univ Tartu, Tartu Observ, Observatooriumi 1, EE-61602 Tartu, Estonia
[3] Estonian Univ Life Sci, Inst Forestry & Engn, Kreutzwaldi 5, EE-51006 Tartu, Estonia
关键词
forest inventory; airborne laser scanning; phenology; large scale forest mapping;
D O I
10.46490/BF663
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Airborne laser scanning (ALS) is used to predict different forest inventory parameters; however, the ALS point cloud properties depend on various parameters such as the type of ALS scanner employed, flight altitude and scanning angle, forest stand structure, forest tree species composition, vegetation season, etc. This study used national coverage high-resolution ALS data with minimum point density of 4 points per square meter in combination with field data from the National Forest Inventory (NFI) to build forest stand height models for forest stands dominated by 6 most common tree species in Latvian mixed forest stands, viz. Pinus sylvestris L., Betula pendula Roth, Picea abies (L.) Karst., Populus tremula L., Alnus incana (L.) Moench and Alnus glutinosa (L.) Gaertn. for the various ALS scanners employed and at different growing seasons. The selected NFI plots are divided into modelling and validation datasets in a ratio of 3 : 1. The results show that for a universal forest stand height model, the RMSE value is 1.91 m and the MAE is 1.41 m. For the forest stand height models, which are stratified by scanner, individual tree species and seasons, the RMSE value is within the limits of 1.4 m for forest stands dominated by Scots pine in leaf-on canopy condition to 3.8 m for birch in leaf-off canopy condition.
引用
收藏
页码:2 / 11
页数:10
相关论文
共 50 条
  • [41] Large tree diameter distribution modelling using sparse airborne laser scanning data in a subtropical forest in Nepal
    Rana, Parvez
    Vauhkonen, Jari
    Junttila, Virpi
    Hou, Zhengyang
    Gautam, Basanta
    Cawkwell, Fiona
    Tokola, Timo
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2017, 134 : 86 - 95
  • [42] FOREST SPECIES AND BIOMASS ESTIMATION USING AIRBORNE LASER SCANNING AND HYPERSPECTRAL IMAGES
    Chan, Jonathan C. -W.
    Dalponte, Michele
    Ene, Liviu
    Frizzera, Lorenzo
    Miglietta, Franco
    Gianelle, Damian
    2013 5TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2013,
  • [43] Prediction of tree biomass in the forest-tundra ecotone using airborne laser scanning
    Nystrom, Mattias
    Holmgren, Johan
    Olsson, Hakan
    REMOTE SENSING OF ENVIRONMENT, 2012, 123 : 271 - 279
  • [44] Tree Diameter at Breast Height Automatic Estimation Based on Forest Terrestrial Laser Scanning
    Wu H.
    Wang X.
    Liu C.
    Tongji Daxue Xuebao/Journal of Tongji University, 2022, 50 (07): : 947 - 954
  • [45] SUPPORT VECTOR MACHINES REGRESSION FOR ESTIMATION OF FOREST PARAMETERS FROM AIRBORNE LASER SCANNING DATA
    Monnet, J. -M.
    Berger, F.
    Chanussot, J.
    2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 2711 - 2714
  • [46] Estimation of fractional forest cover from airborne laser scanning data in abandoned agricultural land
    Puittaimestiku kaardistamine aerolidari andmete põhjal metsana lisanduvatel aladel
    Mõistus, Marta, 1600, Institute of Forestry and Rural Engineering (59):
  • [47] TREE SPECIES CLASSIFICATION USING AIRBORNE HYPERSPECTRAL DATA IN SUBTROPICAL MOUNTAINOUS FOREST
    Jia, Wen
    Pang, Yong
    Meng, Shili
    Ju, Hongbo
    Li, Zengyuan
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 2284 - 2287
  • [48] Validating modeled lidar waveforms in forest canopies with airborne laser scanning data
    Ni-Meister, Wenge
    Yang, Wenze
    Lee, Shihyan
    Strahler, Alan H.
    Zhao, Feng
    REMOTE SENSING OF ENVIRONMENT, 2018, 204 : 229 - 243
  • [49] Estimating and mapping forest structural diversity using airborne laser scanning data
    Mura, Matteo
    McRoberts, Ronald E.
    Chirici, Gherardo
    Marchetti, Marco
    REMOTE SENSING OF ENVIRONMENT, 2015, 170 : 133 - 142
  • [50] Multivariate inference for forest inventories using auxiliary airborne laser scanning data
    McRoberts, Ronald E.
    Chen, Qi
    Walters, Brian F.
    FOREST ECOLOGY AND MANAGEMENT, 2017, 401 : 295 - 303