The influence of forest tree species composition on the forest height predicted from airborne laser scanning data - A case study in Latvia

被引:1
|
作者
Ivanovs, Janis [1 ]
Lazdins, Andis [1 ]
Lang, Mait [2 ,3 ]
机构
[1] Latvian State Forest Res Inst Silava, Riga Str 111, LV-2169 Salaspils, Latvia
[2] Univ Tartu, Tartu Observ, Observatooriumi 1, EE-61602 Tartu, Estonia
[3] Estonian Univ Life Sci, Inst Forestry & Engn, Kreutzwaldi 5, EE-51006 Tartu, Estonia
关键词
forest inventory; airborne laser scanning; phenology; large scale forest mapping;
D O I
10.46490/BF663
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Airborne laser scanning (ALS) is used to predict different forest inventory parameters; however, the ALS point cloud properties depend on various parameters such as the type of ALS scanner employed, flight altitude and scanning angle, forest stand structure, forest tree species composition, vegetation season, etc. This study used national coverage high-resolution ALS data with minimum point density of 4 points per square meter in combination with field data from the National Forest Inventory (NFI) to build forest stand height models for forest stands dominated by 6 most common tree species in Latvian mixed forest stands, viz. Pinus sylvestris L., Betula pendula Roth, Picea abies (L.) Karst., Populus tremula L., Alnus incana (L.) Moench and Alnus glutinosa (L.) Gaertn. for the various ALS scanners employed and at different growing seasons. The selected NFI plots are divided into modelling and validation datasets in a ratio of 3 : 1. The results show that for a universal forest stand height model, the RMSE value is 1.91 m and the MAE is 1.41 m. For the forest stand height models, which are stratified by scanner, individual tree species and seasons, the RMSE value is within the limits of 1.4 m for forest stands dominated by Scots pine in leaf-on canopy condition to 3.8 m for birch in leaf-off canopy condition.
引用
收藏
页码:2 / 11
页数:10
相关论文
共 50 条
  • [31] Classifying tree and nontree echoes from airborne laser scanning in the forest-tundra ecotone
    Stumberg, Nadja
    Orka, Hans Ole
    Bollandsas, Ole Martin
    Gobakken, Terje
    Naesset, Erik
    CANADIAN JOURNAL OF REMOTE SENSING, 2012, 38 (06) : 655 - 666
  • [32] Predicting tree species composition using airborne laser scanning and multispectral data in boreal forests
    Bielza, Jaime Candelas
    Noordermeer, Lennart
    Naesset, Erik
    Gobakken, Terje
    Breidenbach, Johannes
    Orka, Hans Ole
    SCIENCE OF REMOTE SENSING, 2024, 10
  • [33] Advancing height growth models for the improved forest reproductive material of the main tree species in Latvia
    Zeltins, Pauls
    Snepsts, Guntars
    Donis, Janis
    Rieksts-Riekstins, Raitis
    Kangur, Ahto
    Jansons, Aris
    BALTIC FORESTRY, 2022, 28 (02) : 233 - 243
  • [34] Gaussian Process Regression for Forest Attribute Estimation From Airborne Laser Scanning Data
    Varvia, Petri
    Lahivaara, Timo
    Maltamo, Matti
    Packalen, Petteri
    Seppanen, Aku
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (06): : 3361 - 3369
  • [35] Characterization of Brazilian forest types utilizing canopy height profiles derived from airborne laser scanning
    Gorgens, Eric B.
    Soares, Carlos P. B.
    Nunes, Matheus H.
    Rodriguez, Luiz C. E.
    APPLIED VEGETATION SCIENCE, 2016, 19 (03) : 518 - 527
  • [36] Airborne laser scanning of forest resources: An overview of research in Italy as a commentary case study
    Montaghi, Alessandro
    Corona, Piermaria
    Dalponte, Michele
    Gianelle, Damiano
    Chirici, Gherardo
    Olsson, Hakan
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2013, 23 : 288 - 300
  • [37] Classification of tree species classes in a hemi-boreal forest from multispectral airborne laser scanning data using a mini raster cell method
    Lindberg, Eva
    Holmgren, Johan
    Olsson, Hakan
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2021, 100
  • [38] A forest structure habitat index based on airborne laser scanning data
    Coops, Nicholas C.
    Tompaski, Piotr
    Nijland, Wiebe
    Rickbeil, Gregory J. M.
    Nielsen, Scott E.
    Bater, Christopher W.
    Stadt, J. John
    ECOLOGICAL INDICATORS, 2016, 67 : 346 - 357
  • [39] Modeling Mediterranean forest structure using airborne laser scanning data
    Bottalico, Francesca
    Chirici, Gherardo
    Giannini, Raffaello
    Mele, Salvatore
    Mura, Matteo
    Puxeddu, Michele
    McRobert, Ronald E.
    Valbuena, Ruben
    Travaglini, Davide
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2017, 57 : 145 - 153
  • [40] Indirect and direct estimation of forest biomass change using forest inventory and airborne laser scanning data
    McRoberts, Ronald E.
    Naesset, Erik
    Gobakken, Terje
    Bollandsas, Ole Martin
    REMOTE SENSING OF ENVIRONMENT, 2015, 164 : 36 - 42