Brain Computer Interface Based on Motor Imagery for Mechanical Arm Grasp Control

被引:2
|
作者
Shi, Tian-Wei [1 ]
Chen, Ke-Jin [1 ]
Ren, Ling [2 ]
Cui, Wen-Hua [1 ]
机构
[1] Univ Sci & Technol Liaoning, Sch Comp Sci & Software Engn, Anshan 114051, Liaoning, Peoples R China
[2] Univ Sci & Technol Liaoning, Sch Innovat & Entrepreneurship, Anshan 114051, Peoples R China
来源
INFORMATION TECHNOLOGY AND CONTROL | 2023年 / 52卷 / 02期
基金
中国国家自然科学基金;
关键词
Brain Computer Interface; Motor Imagery; Convolutional Neural Network; Quaternary Classification; CLASSIFICATION; SYSTEM;
D O I
10.5755/j01.itc.52.2.32873
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper puts forward a brain computer interface (BCI) system to realize the hand and wrist control using the Asea Brown Boveri (ABB) Mechanical Arm. This BCI system gathers four kinds of motor imaginary (MI) tasks (hand grasp, hand spread, wrist flexion and wrist extension) electroencephalogram (EEG) signals from 30 electrodes. It utilizes two fifth-order Butterworth Band-Pass Filter (BPF) with different bandwidths and normalization method to achieve the raw MI tasks EEG signals preprocessing. The main challenge of feature extraction is to analyze the MI task intention from the preprocessed EEG signals. Therefore, the proposed BCI system extracts eleven kinds of features in time domain and time-frequency domain and uses mutual information method to reduce the large dimension of the extracted features. In addition, the BCI system applies a single convolutional layer Convolutional neural networks (CNN) with 30 filters to implement the quaternary classification of MI tasks. Compared with existing research, the classification accuracy of this BCI system is increased by about 32%-35%. The actual mechanical arm grasping control experiments verifies that this BCI system has good adaptability.
引用
下载
收藏
页码:358 / 366
页数:9
相关论文
共 50 条
  • [1] Optimizing Motor Imagery Parameters for Robotic Arm Control by Brain-Computer Interface
    Hayta, Unal
    Irimia, Danut Constantin
    Guger, Christoph
    Erkutlu, Ibrahim
    Guzelbey, Ibrahim Halil
    BRAIN SCIENCES, 2022, 12 (07)
  • [2] Study on brain computer interface based on motor imagery
    Zhou, Yu
    Zhao, Jinhui
    Zhou, Xiaoming
    International Journal of Signal Processing, Image Processing and Pattern Recognition, 2013, 6 (04) : 201 - 210
  • [3] Mechanical Vibrotactile Stimulation Effect in Motor Imagery based Brain-computer Interface
    Yao, Lin
    Sheng, Xinjun
    Meng, Jianjun
    Zhang, Dingguo
    Zhu, Xiangyang
    2013 35TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2013, : 2772 - 2775
  • [4] Electrophysiological brain activity during the control of a motor imagery-based brain–computer interface
    Frolov A.A.
    Aziatskaya G.A.
    Bobrov P.D.
    Luykmanov R.K.
    Fedotova I.R.
    Húsek D.
    Snašel V.
    Human Physiology, 2017, 43 (5) : 501 - 511
  • [5] MOTOR IMAGERY BASED BRAIN COMPUTER INTERFACE WITH VIBROTACTILE INTERACTION
    Liburkina, S. P.
    Vasilyev, A. N.
    Yakovlev, L. V.
    Gordleeva, S. Yu.
    Kaplan, A. Ya.
    ZHURNAL VYSSHEI NERVNOI DEYATELNOSTI IMENI I P PAVLOVA, 2017, 67 (04) : 414 - 429
  • [6] Design of Wearable Brain Computer Interface Based on Motor Imagery
    Lin, Chuan-Lung
    Chu, Tso-Yao
    Wu, Pei-Jung
    Wang, Chen-An
    Lin, Bor-Shyh
    2014 TENTH INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATION HIDING AND MULTIMEDIA SIGNAL PROCESSING (IIH-MSP 2014), 2014, : 33 - 36
  • [7] A Motor Imagery Based Brain-Computer Interface Speller
    Xia, Bin
    Yang, Jing
    Cheng, Conghui
    Xie, Hong
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, PT II, 2013, 7903 : 413 - 421
  • [8] A Brain Computer Interface based on motor imagery for maze game
    Zhou, Tichao
    Chen, Anqi
    Chen, Kun
    2017 10TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID), VOL. 1, 2017, : 398 - 401
  • [9] Motor Imagery Brain-Computer Interface for RPAS Command and Control
    Arnaldo, Rosa
    Gomez Comendador, Fernando
    Perez, Luis
    Rodriguez, Alvaro
    ADVANCES IN HUMAN FACTORS AND SYSTEMS INTERACTION, 2018, 592 : 325 - 335
  • [10] Brain Computer Interface based Robotic Arm Control
    Latif, Muhammad Yasir
    Naeem, Laiba
    Hafeez, Tehmina
    Raheel, Aasim
    Saeed, Sanay Muhammad Umar
    Awais, Muhammad
    Alnowami, Majdi
    Anwar, Syed Muhammad
    2017 INTERNATIONAL SMART CITIES CONFERENCE (ISC2), 2017,