Deep learning in image-based phenotypic drug discovery

被引:17
|
作者
Krentzel, Daniel [1 ,2 ]
Shorte, Spencer L. [2 ,3 ]
Zimmer, Christophe [1 ,2 ]
机构
[1] Univ Paris Cite, Inst Pasteur, Imaging & Modeling Unit, F-75015 Paris, France
[2] Inst Pasteur, Joint Int Unit Artificial Intelligence Image Based, F-75015 Paris, France
[3] Univ Paris Cite, Inst Pasteur, Ctr Ressources & Rech Technol, Photon Bioimaging,UTechS PBI,C2RT, F-75015 Paris, France
关键词
CELL; MICROSCOPY; IDENTIFICATION; PLATFORM; ASSAY;
D O I
10.1016/j.tcb.2022.11.011
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Modern drug discovery approaches often use high-content imaging to systema-tically study the effect on cells of large libraries of chemical compounds. By automatically screening thousands or millions of images to identify specific drug-induced cellular phenotypes, for example, altered cellular morphology, these approaches can reveal 'hit' compounds offering therapeutic promise. In the past few years, artificial intelligence (AI) methods based on deep learning (DL) [a family of machine learning (ML) techniques] have disrupted virtually all image analysis tasks, from image classification to segmentation. These powerful methods also promise to impact drug discovery by accelerating the identification of effective drugs and their modes of action. In this review, we highlight applica-tions and adaptations of ML, especially DL methods for cell-based phenotypic drug discovery (PDD).
引用
收藏
页码:538 / 554
页数:17
相关论文
共 50 条
  • [31] Image-based phenotyping of disaggregated cells using deep learning
    Samuel Berryman
    Kerryn Matthews
    Jeong Hyun Lee
    Simon P. Duffy
    Hongshen Ma
    Communications Biology, 3
  • [32] Deep Transfer Learning for Image-Based Structural Damage Recognition
    Gao, Yuqing
    Mosalam, Khalid M.
    COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2018, 33 (09) : 748 - 768
  • [33] Image-Based Monitoring of Jellyfish Using Deep Learning Architecture
    Kim, Hanguen
    Koo, Jungmo
    Kim, Donghoon
    Jung, Sungwook
    Shin, Jae-Uk
    Lee, Serin
    Myung, Hyun
    IEEE SENSORS JOURNAL, 2016, 16 (08) : 2215 - 2216
  • [34] IMAGE-BASED DEEP LEARNING FOR RHEOLOGY DETERMINATION OF BINGHAM FLUIDS
    Ponick, Anne
    Langer, Amadeus
    Beyer, Dries
    Coenen, Max
    Haist, Michael
    Heipke, Christian
    XXIV ISPRS CONGRESS IMAGING TODAY, FORESEEING TOMORROW, COMMISSION II, 2022, 43-B2 : 711 - 720
  • [35] Image-based Plant Diseases Detection using Deep Learning
    Panchal A.V.
    Patel S.C.
    Bagyalakshmi K.
    Kumar P.
    Khan I.R.
    Soni M.
    Materials Today: Proceedings, 2023, 80 : 3500 - 3506
  • [36] A Deep Learning Framework for Image-Based Screening of Kawasaki Disease
    Lam, Jonathan Y.
    Kanegaye, John T.
    Xu, Ellen
    Gardiner, Michael A.
    Burns, Jane C.
    Nemati, Shamim
    Tremoulet, Adriana H.
    2023 45TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY, EMBC, 2023,
  • [37] Image-based phenotyping of disaggregated cells using deep learning
    Berryman, Samuel
    Matthews, Kerryn
    Lee, Jeong Hyun
    Duffy, Simon P.
    Ma, Hongshen
    COMMUNICATIONS BIOLOGY, 2020, 3 (01)
  • [38] A deep learning and image-based model for air quality estimation
    Zhang, Qiang
    Fu, Fengchen
    Tian, Ran
    SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 724
  • [39] Automated identification of retinopathy of prematurity by image-based deep learning
    Yan Tong
    Wei Lu
    Qin-qin Deng
    Changzheng Chen
    Yin Shen
    Eye and Vision, 7
  • [40] Image-based process monitoring using deep learning framework
    Lyu, Yuting
    Chen, Junghui
    Song, Zhihuan
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2019, 189 : 8 - 17