Deep learning in image-based phenotypic drug discovery

被引:17
|
作者
Krentzel, Daniel [1 ,2 ]
Shorte, Spencer L. [2 ,3 ]
Zimmer, Christophe [1 ,2 ]
机构
[1] Univ Paris Cite, Inst Pasteur, Imaging & Modeling Unit, F-75015 Paris, France
[2] Inst Pasteur, Joint Int Unit Artificial Intelligence Image Based, F-75015 Paris, France
[3] Univ Paris Cite, Inst Pasteur, Ctr Ressources & Rech Technol, Photon Bioimaging,UTechS PBI,C2RT, F-75015 Paris, France
关键词
CELL; MICROSCOPY; IDENTIFICATION; PLATFORM; ASSAY;
D O I
10.1016/j.tcb.2022.11.011
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Modern drug discovery approaches often use high-content imaging to systema-tically study the effect on cells of large libraries of chemical compounds. By automatically screening thousands or millions of images to identify specific drug-induced cellular phenotypes, for example, altered cellular morphology, these approaches can reveal 'hit' compounds offering therapeutic promise. In the past few years, artificial intelligence (AI) methods based on deep learning (DL) [a family of machine learning (ML) techniques] have disrupted virtually all image analysis tasks, from image classification to segmentation. These powerful methods also promise to impact drug discovery by accelerating the identification of effective drugs and their modes of action. In this review, we highlight applica-tions and adaptations of ML, especially DL methods for cell-based phenotypic drug discovery (PDD).
引用
收藏
页码:538 / 554
页数:17
相关论文
共 50 条
  • [21] Deep Feature Learning for Image-Based Kinship Verification
    Zhao, Shuhuan
    Wang, Chunrong
    Liu, Shuaiqi
    Cheng, Hongfang
    ADVANCES IN COMPUTER GRAPHICS, CGI 2023, PT I, 2024, 14495 : 130 - 142
  • [22] MalariaFlow: A comprehensive deep learning platform for multistage phenotypic antimalarial drug discovery
    Lin, Mujie
    Cai, Junxi
    Wei, Yuancheng
    Peng, Xinru
    Luo, Qianhui
    Li, Biaoshun
    Chen, Yihao
    Wang, Ling
    EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, 2024, 277
  • [23] Deep Learning for an Automated Image-Based Stem Cell Classification
    Zamani, Nurul Syahira Mohamad
    Hoe, Ernest Yoon Choong
    Huddin, Aqilah Baseri
    Zaki, Wan Mimi Diyana Wan
    Abd Hamid, Zariyantey
    JURNAL KEJURUTERAAN, 2023, 35 (05): : 1181 - 1189
  • [24] Image-based deep learning for smart digital twins: a review
    Islam, Md Ruman
    Subramaniam, Mahadevan
    Huang, Pei-Chi
    Artificial Intelligence Review, 2025, 58 (05)
  • [25] Using Deep Learning for Image-Based Plant Disease Detection
    Mohanty, Sharada P.
    Hughes, David P.
    Salathe, Marcel
    FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [26] Image-based deep learning automated sorting of date fruit
    Nasiri, Amin
    Taheri-Garavand, Amin
    Zhang, Yu-Dong
    POSTHARVEST BIOLOGY AND TECHNOLOGY, 2019, 153 : 133 - 141
  • [27] Note: Image-based Prediction of House Attributes with Deep Learning
    Huang, Weimin
    Olson, Alexander W.
    Saxe, Shoshanna
    Khalil, Elias B.
    PROCEEDINGS OF THE 4TH ACM SIGCAS/SIGCHI CONFERENCE ON COMPUTING AND SUSTAINABLE SOCIETIES, COMPASS'22, 2022, : 693 - 695
  • [28] Deep learning for image-based cancer detection and diagnosis - A survey
    Hu, Zilong
    Tang, Jinshan
    Wang, Ziming
    Zhang, Kai
    Zhang, Ling
    Sun, Qingling
    PATTERN RECOGNITION, 2018, 83 : 134 - 149
  • [29] Prediction of sloshing pressure using image-based deep learning
    Kim, Ki Jong
    Kim, Daegyoum
    OCEAN ENGINEERING, 2024, 303
  • [30] Deep Learning for Image-Based Plant Growth Monitoring: A Review
    Tong, Yin-Syuen
    Lee, Tou-Hong
    Yen, Kin-Sam
    INTERNATIONAL JOURNAL OF ENGINEERING AND TECHNOLOGY INNOVATION, 2022, 12 (03) : 225 - 246