Incompressible limit for the free surface Navier-Stokes system

被引:1
|
作者
Masmoudi, Nader [1 ,2 ]
Rousset, Frederic [3 ]
Sun, Changzhen [4 ,5 ]
机构
[1] New York Univ Abu Dhabi, NYUAD Res Inst, POB 129188, Abu Dhabi, U Arab Emirates
[2] NYU, Courant Inst Math Sci, 251 Mercer St, New York, NY 10012 USA
[3] Univ Paris Saclay, CNRS, Lab Math Orsay UMR 8628, F-91405 Orsay, France
[4] Univ Toulouse, Inst Math Toulouse, UMR 5219, F-31062 Toulouse 9, France
[5] Univ Paul Sabatier, CNRS, 118 Route Narbonne, F-31062 Toulouse 9, France
关键词
Uniform regularity; Low Mach number limit; Free surface viscous fluids; Boundary layer; MACH NUMBER LIMIT; FREE-BOUNDARY PROBLEM; COMPRESSIBLE EULER EQUATIONS; WATER-WAVES SYSTEM; WELL-POSEDNESS; GLOBAL-SOLUTIONS; SINGULAR LIMITS; UNIFORM REGULARITY; EXISTENCE; SLIP;
D O I
10.1007/s40818-023-00148-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish uniform regularity estimates with respect to the Mach number for the three-dimensional free surface compressible Navier-Stokes system in the case of slightly well-prepared initial data in the sense that the acoustic components like the divergence of the velocity field are of size v e, e being the Mach number. These estimates allow us to justify the convergence towards the free surface incompressible Navier-Stokes system in the low Mach number limit. One of the main difficulties is the control of the regularity of the surface in presence of boundary layers with fast oscillations.
引用
收藏
页数:134
相关论文
共 50 条
  • [21] The Inviscid Limit for the Steady Incompressible Navier-Stokes Equations in the Three Dimension
    Yan Yan
    Weiping Yan
    Chinese Annals of Mathematics, Series B, 2023, 44 : 209 - 234
  • [22] Uniform Regularity and Vanishing Viscosity Limit for the Free Surface Navier-Stokes Equations
    Masmoudi, Nader
    Rousset, Frederic
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 223 (01) : 301 - 417
  • [23] Convergence of the relaxed compressible Navier-Stokes equations to the incompressible Navier-Stokes equations
    Ju, Qiangchang
    Wang, Zhao
    APPLIED MATHEMATICS LETTERS, 2023, 141
  • [24] Solving the incompressible surface Navier-Stokes equation by surface finite elements
    Reuther, Sebastian
    Voigt, Axel
    PHYSICS OF FLUIDS, 2018, 30 (01)
  • [25] Remarks on Sharp Interface Limit for an Incompressible Navier-Stokes and Allen-Cahn Coupled System
    Song JIANG
    Xiangxiang SU
    Feng XIE
    Chinese Annals of Mathematics,Series B, 2023, (05) : 663 - 686
  • [26] Remarks on Sharp Interface Limit for an Incompressible Navier-Stokes and Allen-Cahn Coupled System
    Jiang, Song
    Su, Xiangxiang
    Xie, Feng
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2023, 44 (05) : 663 - 686
  • [27] Remarks on Sharp Interface Limit for an Incompressible Navier-Stokes and Allen-Cahn Coupled System
    Song Jiang
    Xiangxiang Su
    Feng Xie
    Chinese Annals of Mathematics, Series B, 2023, 44 : 663 - 686
  • [28] Preconditioners for Incompressible Navier-Stokes Solvers
    Segal, A.
    Rehman, M. Ur
    Vuik, C.
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2010, 3 (03) : 245 - 275
  • [29] Preconditioners for Incompressible Navier-Stokes Solvers
    A.Segal
    M.ur Rehman
    C.Vuik
    Numerical Mathematics:Theory,Methods and Applications, 2010, (03) : 245 - 275
  • [30] The Incompressible Navier-Stokes Equations in Vacuum
    Danchin, Raphael
    Mucha, Piotr Boguslaw
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2019, 72 (07) : 1351 - 1385