Non-Equilibrium Bedload Transport Model Applied to Erosive Overtopping Dambreach

被引:2
|
作者
Martinez-Aranda, Sergio [1 ]
Fernandez-Pato, Javier [2 ]
Garcia-Navarro, Pilar [1 ]
机构
[1] Univ Zaragoza, Fluid Dynam Technol I3A, C Maria de Luna 3, Zaragoza 50018, Spain
[2] CSIC, Estn Expt Aula Dei EEAD, Avda Montanana 1005, Zaragoza 50059, Spain
关键词
dam breaching; overtopping erosion; bedload transport; non-equilibrium transport; finite volume methods; breach side stability; BED-LOAD SEDIMENT; NUMERICAL-MODEL; FLOW; UNSTEADY; 1D; FORMULATIONS; SIMULATION; EQUATIONS;
D O I
10.3390/w15173094
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Bedload sediment transport is an ubiquitous process in natural surface water flows (rivers, dams, coast, etc), but it also plays a key role in catastrophic events such as dyke erosion or dam breach collapse. The bedload transport mechanism can be under equilibrium state, where solid rate and flow carry capacity are balanced, or under non-equilibrium (non-capacity) conditions. Extremely transient surface flows, such as dam/dyke erosive collapses, are systems which always change in space and time, hence absolute equilibrium states in the coupled fluid/solid transport rarely exist. Intuitively, assuming non-equilibrium conditions in transient flows should allow to estimate correctly the bedload transport rates and the bed level evolution. To get insight into this topic, a 2D Finite Volume model for bedload transport based on the non-capacity approach is proposed in this work. This non-equilibrium model considers that the actual bedload sediment discharge can be delayed, spatial and temporally, from the instantaneous solid carry capacity of the flow. Furthermore, the actual solid rate and the adaptation length/time is governed by the temporal evolution of the bedload transport layer and the vertical exchange solid flux. The model is tested for the simulation of overtopping dyke erosion and dambreach opening cases. Numerical results seems to support that considering non-equilibrium conditions for the bedload transport improves the general agreement between the computed results and measured data in both benchmarking cases.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Non-equilibrium Landauer transport model for Hawking radiation from a black hole
    Nation, P. D.
    Blencowe, M. P.
    Nori, Franco
    [J]. NEW JOURNAL OF PHYSICS, 2012, 14
  • [42] NON-EQUILIBRIUM SCALING IN THE SCHLOGL MODEL
    ELDERFIELD, D
    VVEDENSKY, DD
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (13): : 2591 - 2601
  • [43] Non-Equilibrium Evaporation/Condensation Model
    Librovich, B. V.
    Nowakowski, A. F.
    Nicolleau, F. C. G. A.
    Michelitsch, T. M.
    [J]. INTERNATIONAL JOURNAL OF APPLIED MECHANICS, 2017, 9 (08)
  • [44] Interface model for non-equilibrium evaporation
    Caputa, J. P.
    Struchtrup, Henning
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2011, 390 (01) : 31 - 42
  • [45] Evaluating equilibrium and non-equilibrium transport of ammonium in a loam soil column
    Hou, Lizhu
    Hu, Bill X.
    Qi, Zhiming
    Yang, Huan
    [J]. HYDROLOGICAL PROCESSES, 2018, 32 (01) : 80 - 92
  • [46] Preface: Non-equilibrium transport, interfaces, and mixing in plasmas
    Abarzhi, Snezhana, I
    Gekelman, Walter
    [J]. PHYSICS OF PLASMAS, 2022, 29 (03)
  • [47] Perspectives of non-equilibrium thermodynamics of calcium transport by caseins
    Leif H. Skibsted
    [J]. European Food Research and Technology, 2024, 250 : 15 - 20
  • [48] NON-EQUILIBRIUM THERMODYNAMICS OF TRANSPORT PROCESSES THROUGH MEMBRANES
    SRIVASTAVA, RC
    PAL, R
    [J]. INDIAN JOURNAL OF CHEMISTRY, 1969, 7 (10): : 1025 - +
  • [49] Covariant Non-Equilibrium Transport Theory Solutions for RHIC
    Miklos Gyulassy
    Dénes Molnár
    [J]. Foundations of Physics, 2001, 31 : 875 - 894
  • [50] Covariant non-equilibrium transport theory solutions for RHIC
    Gyulassy, M
    Molnár, D
    [J]. FOUNDATIONS OF PHYSICS, 2001, 31 (06) : 875 - 894