Non-Equilibrium Bedload Transport Model Applied to Erosive Overtopping Dambreach

被引:2
|
作者
Martinez-Aranda, Sergio [1 ]
Fernandez-Pato, Javier [2 ]
Garcia-Navarro, Pilar [1 ]
机构
[1] Univ Zaragoza, Fluid Dynam Technol I3A, C Maria de Luna 3, Zaragoza 50018, Spain
[2] CSIC, Estn Expt Aula Dei EEAD, Avda Montanana 1005, Zaragoza 50059, Spain
关键词
dam breaching; overtopping erosion; bedload transport; non-equilibrium transport; finite volume methods; breach side stability; BED-LOAD SEDIMENT; NUMERICAL-MODEL; FLOW; UNSTEADY; 1D; FORMULATIONS; SIMULATION; EQUATIONS;
D O I
10.3390/w15173094
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Bedload sediment transport is an ubiquitous process in natural surface water flows (rivers, dams, coast, etc), but it also plays a key role in catastrophic events such as dyke erosion or dam breach collapse. The bedload transport mechanism can be under equilibrium state, where solid rate and flow carry capacity are balanced, or under non-equilibrium (non-capacity) conditions. Extremely transient surface flows, such as dam/dyke erosive collapses, are systems which always change in space and time, hence absolute equilibrium states in the coupled fluid/solid transport rarely exist. Intuitively, assuming non-equilibrium conditions in transient flows should allow to estimate correctly the bedload transport rates and the bed level evolution. To get insight into this topic, a 2D Finite Volume model for bedload transport based on the non-capacity approach is proposed in this work. This non-equilibrium model considers that the actual bedload sediment discharge can be delayed, spatial and temporally, from the instantaneous solid carry capacity of the flow. Furthermore, the actual solid rate and the adaptation length/time is governed by the temporal evolution of the bedload transport layer and the vertical exchange solid flux. The model is tested for the simulation of overtopping dyke erosion and dambreach opening cases. Numerical results seems to support that considering non-equilibrium conditions for the bedload transport improves the general agreement between the computed results and measured data in both benchmarking cases.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Non-Equilibrium Collective Transport on Molecular Highways
    Parmeggiani, Andrea
    [J]. TRAFFIC AND GRANULAR FLOW '07, 2009, : 667 - 677
  • [32] A thermal transport and non-equilibrium deposition model in AlN sublimation growth process
    Wu, Bei
    Zhang, Hui
    [J]. HT2005: Proceedings of the ASME Summer Heat Transfer Conference 2005, Vol 3, 2005, : 735 - 743
  • [33] A ONE-DIMENSIONAL MODEL FOR THE TRANSPORT OF A SEDIMENT MIXTURE IN NON-EQUILIBRIUM CONDITIONS
    ARMANINI, A
    DISILVIO, G
    [J]. JOURNAL OF HYDRAULIC RESEARCH, 1988, 26 (03) : 275 - 292
  • [34] A model of non-equilibrium statistical mechanics
    Piasecki, J
    Sinai, YG
    [J]. DYNAMICS: MODELS AND KINETIC METHODS FOR NON-EQUILIBRIUM MANY BODY SYSTEMS, 2000, 371 : 191 - 199
  • [35] A non-equilibrium Ising model of turbulence
    Faranda, Davide
    Mihelich, Martin
    Dubrulle, Berengere
    [J]. PHASE TRANSITIONS, 2017, 90 (11) : 1079 - 1088
  • [37] A multiphase first order model for non-equilibrium sand erosion, transport and sedimentation
    Preziosi, L.
    Fransos, D.
    Bruno, L.
    [J]. APPLIED MATHEMATICS LETTERS, 2015, 45 : 69 - 75
  • [38] The engineering model of non-equilibrium flow
    Nikitchenko Y.A.
    [J]. Russian Aeronautics, 2014, 57 (03): : 266 - 271
  • [39] Non-equilibrium STLS approach to transport properties of single impurity Anderson model
    Rezai, Raheleh
    Ebrahimi, Farshad
    [J]. ANNALS OF PHYSICS, 2014, 343 : 103 - 114
  • [40] A non-equilibrium thermodynamics model of multicomponent mass and heat transport in pervaporation processes
    Villaluenga, Juan P. G.
    Kjelstrup, Signe
    [J]. JOURNAL OF NON-EQUILIBRIUM THERMODYNAMICS, 2012, 37 (04) : 353 - 376