Non-Equilibrium Bedload Transport Model Applied to Erosive Overtopping Dambreach

被引:2
|
作者
Martinez-Aranda, Sergio [1 ]
Fernandez-Pato, Javier [2 ]
Garcia-Navarro, Pilar [1 ]
机构
[1] Univ Zaragoza, Fluid Dynam Technol I3A, C Maria de Luna 3, Zaragoza 50018, Spain
[2] CSIC, Estn Expt Aula Dei EEAD, Avda Montanana 1005, Zaragoza 50059, Spain
关键词
dam breaching; overtopping erosion; bedload transport; non-equilibrium transport; finite volume methods; breach side stability; BED-LOAD SEDIMENT; NUMERICAL-MODEL; FLOW; UNSTEADY; 1D; FORMULATIONS; SIMULATION; EQUATIONS;
D O I
10.3390/w15173094
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Bedload sediment transport is an ubiquitous process in natural surface water flows (rivers, dams, coast, etc), but it also plays a key role in catastrophic events such as dyke erosion or dam breach collapse. The bedload transport mechanism can be under equilibrium state, where solid rate and flow carry capacity are balanced, or under non-equilibrium (non-capacity) conditions. Extremely transient surface flows, such as dam/dyke erosive collapses, are systems which always change in space and time, hence absolute equilibrium states in the coupled fluid/solid transport rarely exist. Intuitively, assuming non-equilibrium conditions in transient flows should allow to estimate correctly the bedload transport rates and the bed level evolution. To get insight into this topic, a 2D Finite Volume model for bedload transport based on the non-capacity approach is proposed in this work. This non-equilibrium model considers that the actual bedload sediment discharge can be delayed, spatial and temporally, from the instantaneous solid carry capacity of the flow. Furthermore, the actual solid rate and the adaptation length/time is governed by the temporal evolution of the bedload transport layer and the vertical exchange solid flux. The model is tested for the simulation of overtopping dyke erosion and dambreach opening cases. Numerical results seems to support that considering non-equilibrium conditions for the bedload transport improves the general agreement between the computed results and measured data in both benchmarking cases.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] NON-EQUILIBRIUM BEDLOAD TRANSPORT BY STEADY FLOWS
    BELL, RG
    SUTHERLAND, AJ
    [J]. JOURNAL OF HYDRAULIC ENGINEERING-ASCE, 1983, 109 (03): : 351 - 367
  • [2] Particle diffusion in non-equilibrium bedload transport simulations
    Bohorquez, Patricio
    Ancey, Christophe
    [J]. APPLIED MATHEMATICAL MODELLING, 2016, 40 (17-18) : 7474 - 7492
  • [3] Non-Equilibrium Transport Theory Applied to Nano Electronics Problems
    Asai, Y.
    Nakamura, H.
    [J]. NONVOLATILE MEMORIES 3, 2014, 64 (14): : 61 - 67
  • [4] A non-equilibrium sediment transport model for rill erosion
    Liu, Q. Q.
    Chen, L.
    Li, J. C.
    Singh, V. P.
    [J]. HYDROLOGICAL PROCESSES, 2007, 21 (08) : 1074 - 1084
  • [5] A Non-equilibrium Approach to Model Flash Dynamics with Interface Transport
    Romo-Hernandez, Aaron
    Dochain, Denis
    Ydstie, B. Erik
    Hudon, Nicolas
    [J]. IFAC PAPERSONLINE, 2018, 51 (18): : 874 - 879
  • [6] A non-equilibrium approach to model flash dynamics with interface transport
    Romo-Hernandez, Aaron
    Hudon, Nicolas
    Ydstie, B. Erik
    Dochain, Denis
    [J]. JOURNAL OF PROCESS CONTROL, 2019, 80 : 211 - 222
  • [7] Local non-equilibrium transport models
    Sobolev, SL
    [J]. USPEKHI FIZICHESKIKH NAUK, 1997, 167 (10): : 1095 - 1106
  • [8] Non-equilibrium transport in Anderson insulations
    Vaknin, A
    Ovadyahu, Z
    Pollak, M
    [J]. PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1998, 205 (01): : 395 - 398
  • [9] Thermal non-equilibrium transport in colloids
    Wuerger, Alois
    [J]. REPORTS ON PROGRESS IN PHYSICS, 2010, 73 (12)
  • [10] Solution of contaminant transport with equilibrium and non-equilibrium adsorption
    Kacur, J
    Malengier, B
    Remesíková, M
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2005, 194 (2-5) : 479 - 489