Causal inference using observational intensive care unit data: a scoping review and recommendations for future practice

被引:3
|
作者
Smit, J. M. [1 ,2 ]
Krijthe, J. H. [2 ]
Kant, W. M. R. [3 ]
Labrecque, J. A. [4 ]
Komorowski, M. [5 ,6 ]
Gommers, D. A. M. P. J. [1 ]
van Bommel, J. [1 ]
Reinders, M. J. T. [2 ]
van Genderen, M. E. [1 ]
机构
[1] Erasmus Univ, Med Ctr, Dept Intens Care, Rotterdam, Netherlands
[2] Delft Univ Technol, Pattern Recognit & Bioinformat Grp, EEMCS, Delft, Netherlands
[3] Radboud Univ Nijmegen, Inst Comp & Informat Sci, Data Sci Grp, Nijmegen, Netherlands
[4] Erasmus MC, Dept Genet Epidemiol, Rotterdam, Netherlands
[5] Imperial Coll London, Fac Med, Dept Surg & Canc, London, England
[6] Charing Cross Hosp, Imperial Coll Healthcare NHS Trust, Intens Care Unit, London, England
关键词
CRITICALLY-ILL PATIENTS; TARGET TRIAL; VENTILATION; THERAPY; MORTALITY; GUIDANCE; WEIGHTS; SLEEP;
D O I
10.1038/s41746-023-00961-1
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
This scoping review focuses on the essential role of models for causal inference in shaping actionable artificial intelligence (AI) designed to aid clinicians in decision-making. The objective was to identify and evaluate the reporting quality of studies introducing models for causal inference in intensive care units (ICUs), and to provide recommendations to improve the future landscape of research practices in this domain. To achieve this, we searched various databases including Embase, MEDLINE ALL, Web of Science Core Collection, Google Scholar, medRxiv, bioRxiv, arXiv, and the ACM Digital Library. Studies involving models for causal inference addressing time-varying treatments in the adult ICU were reviewed. Data extraction encompassed the study settings and methodologies applied. Furthermore, we assessed reporting quality of target trial components (i.e., eligibility criteria, treatment strategies, follow-up period, outcome, and analysis plan) and main causal assumptions (i.e., conditional exchangeability, positivity, and consistency). Among the 2184 titles screened, 79 studies met the inclusion criteria. The methodologies used were G methods (61%) and reinforcement learning methods (39%). Studies considered both static (51%) and dynamic treatment regimes (49%). Only 30 (38%) of the studies reported all five target trial components, and only seven (9%) studies mentioned all three causal assumptions. To achieve actionable AI in the ICU, we advocate careful consideration of the causal question of interest, describing this research question as a target trial emulation, usage of appropriate causal inference methods, and acknowledgement (and examination of potential violations of) the causal assumptions.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Causal inference using observational intensive care unit data: a scoping review and recommendations for future practice
    J. M. Smit
    J. H. Krijthe
    W. M. R. Kant
    J. A. Labrecque
    M. Komorowski
    D. A. M. P. J. Gommers
    J. van Bommel
    M. J. T. Reinders
    M. E. van Genderen
    npj Digital Medicine, 6
  • [2] Comfort Terminal Care in the intensive care unit: recommendations for practice
    Schaden, Eva
    Dier, Helga
    Weixler, Dietmar
    Hasibeder, Walter
    Lenhart-Orator, Andrea
    Roden, Christian
    Fruhwald, Sonja
    Friesenecker, Barbara
    ANAESTHESIOLOGIE, 2024, 73 (03): : 177 - 185
  • [3] Comfort Terminal Care in the intensive care unit: recommendations for practice
    Schaden E.
    Dier H.
    Weixler D.
    Hasibeder W.
    Lenhart-Orator A.
    Roden C.
    Fruhwald S.
    Friesenecker B.
    Die Anaesthesiologie, 2024, 73 (3): : 177 - 185
  • [4] Intensive care unit admission criteria: a scoping review
    Soares, James
    Leung, Catherine
    Campbell, Victoria
    van der Vegt, Anton
    Malycha, James
    Andersen, Christopher
    JOURNAL OF THE INTENSIVE CARE SOCIETY, 2024, 25 (03) : 296 - 307
  • [5] Thrombocytopenia in intensive care unit patients: A scoping review
    Jonsson, Andreas Bender
    Rygard, Sofie Louise
    Hildebrandt, Thomas
    Perner, Anders
    Moller, Morten Hylander
    Russell, Lene
    ACTA ANAESTHESIOLOGICA SCANDINAVICA, 2021, 65 (01) : 2 - 14
  • [6] Physiotherapy in the neurotrauma intensive care unit: A scoping review
    Newman, Anastasia N. L.
    Gravesande, Janelle
    Rotella, Stephanie
    Wu, Stephen S.
    Topp-Nguyen, Nam
    Kho, Michelle E.
    Harris, Jocelyn E.
    Fox-Robichaud, Alison
    Solomon, Patricia
    JOURNAL OF CRITICAL CARE, 2018, 48 : 390 - 406
  • [7] The use of checklists in the intensive care unit: a scoping review
    Ethan J. Erikson
    Daniel A. Edelman
    Fiona M. Brewster
    Stuart D. Marshall
    Maryann C. Turner
    Vineet V. Sarode
    David J. Brewster
    Critical Care, 27
  • [8] The use of checklists in the intensive care unit: a scoping review
    Erikson, Ethan J.
    Edelman, Daniel A.
    Brewster, Fiona M.
    Marshall, Stuart D.
    Turner, Maryann C.
    Sarode, Vineet V.
    Brewster, David J.
    CRITICAL CARE, 2023, 27 (01)
  • [9] Observational process data analytics using causal inference
    Yang, Shu
    Bequette, B. Wayne
    AICHE JOURNAL, 2023, 69 (04)
  • [10] Causal inference and effect estimation using observational data
    Igelstrom, Erik
    Craig, Peter
    Lewsey, Jim
    Lynch, John
    Pearce, Anna
    Katikireddi, Srinivasa Vittal
    JOURNAL OF EPIDEMIOLOGY AND COMMUNITY HEALTH, 2022, 76 (11) : 960 - 966