Non-vanishing of theta components of Jacobi forms with level and an application

被引:0
|
作者
Anamby, Pramath [1 ]
机构
[1] Indian Inst Sci Educ & Res, Dept Math, Pune 411008, India
关键词
Jacobi forms; theta components; Fourier coefficients; Siegel modular forms; non-vanishing; SIEGEL CUSP FORMS; FOURIER;
D O I
10.1142/S1793042124500295
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that a nonzero Jacobi form of level N (an odd integer) and square-free index m(1)m(2) with m1|N and (N, m(2)) = 1 has a nonzero theta component h mu with either (mu, 2m(1)m(2)) = 1 or (mu, 2m(1)m(2)) f (2)m(2). As an application, we prove that a nonzero Siegel cusp form F of degree 2 and an odd level N in the Atkin-Lehner type newspace is determined by fundamental Fourier coefficients up to a divisor of N.
引用
收藏
页码:549 / 564
页数:16
相关论文
共 50 条
  • [41] Non-vanishing of automorphic L-functions of prime power level
    Balkanova, Olga
    Frolenkov, Dmitry
    MONATSHEFTE FUR MATHEMATIK, 2018, 185 (01): : 17 - 41
  • [42] Non-vanishing of certain cyclotomic multiple harmonic sums and application to the non-vanishing of certain p-adic cyclotomic multiple zeta values
    Jarossay, David
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2022, 18 (04) : 849 - 877
  • [43] Level sets of differentiable functions of two variables with non-vanishing gradient
    Elekes, M
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 270 (02) : 369 - 382
  • [44] SOME LOCAL-GLOBAL NON-VANISHING RESULTS FOR THETA LIFTS FROM ORTHOGONAL GROUPS
    Takeda, Shuichiro
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (10) : 5575 - 5599
  • [45] Non-vanishing elements in finite groups
    Miyamoto, Masahiko
    JOURNAL OF ALGEBRA, 2012, 364 : 88 - 89
  • [46] On the commutant of asymptotically non-vanishing contractions
    György Pál Gehér
    László Kérchy
    Periodica Mathematica Hungarica, 2011, 63 : 191 - 203
  • [47] A NON-VANISHING RESULT ON THE SINGULARITY CATEGORY
    Chen, Xiao-Wu
    Li, Zhi-Wei
    Zhang, Xiaojin
    Zhao, Zhibing
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 152 (09) : 3765 - 3776
  • [48] Non-vanishing elements in finite groups
    Brough, Julian
    JOURNAL OF ALGEBRA, 2016, 460 : 387 - 391
  • [49] ON THE NON-VANISHING OF SHALIKA NEWVECTORS AT THE IDENTITY
    Grobner, Harald
    Matringe, Nadir
    RAD HRVATSKE AKADEMIJE ZNANOSTI I UMJETNOSTI-MATEMATICKE ZNANOSTI, 2024, 28 (558): : 93 - 106
  • [50] Non-vanishing elements of finite groups
    Dolfi, Silvio
    Navarro, Gabriel
    Pacifici, Emanuele
    Sanus, Lucia
    Tiep, Pham Huu
    JOURNAL OF ALGEBRA, 2010, 323 (02) : 540 - 545