Non-vanishing of theta components of Jacobi forms with level and an application

被引:0
|
作者
Anamby, Pramath [1 ]
机构
[1] Indian Inst Sci Educ & Res, Dept Math, Pune 411008, India
关键词
Jacobi forms; theta components; Fourier coefficients; Siegel modular forms; non-vanishing; SIEGEL CUSP FORMS; FOURIER;
D O I
10.1142/S1793042124500295
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that a nonzero Jacobi form of level N (an odd integer) and square-free index m(1)m(2) with m1|N and (N, m(2)) = 1 has a nonzero theta component h mu with either (mu, 2m(1)m(2)) = 1 or (mu, 2m(1)m(2)) f (2)m(2). As an application, we prove that a nonzero Siegel cusp form F of degree 2 and an odd level N in the Atkin-Lehner type newspace is determined by fundamental Fourier coefficients up to a divisor of N.
引用
下载
收藏
页码:549 / 564
页数:16
相关论文
共 50 条