Screening macroalgae for mitigation of enteric methane in vitro

被引:6
|
作者
Wasson, D. E. [1 ]
Stefenoni, H. [1 ]
Cueva, S. F. [1 ]
Lage, C. [1 ]
Raisanen, S. E. [1 ,2 ]
Melgar, A. [1 ,3 ]
Fetter, M. [1 ]
Hennessy, M. [4 ]
Narayan, K. [4 ]
Indugu, N. [4 ]
Pitta, D. [4 ]
Yarish, C. [5 ]
Hristov, A. N. [1 ]
机构
[1] Penn State Univ, Dept Anim Sci, University Pk, PA 16802 USA
[2] Swiss Fed Inst Technol, Inst Agr Sci, Dept Environm Sci, CH-8092 Zurich, Switzerland
[3] Agr Innovat Inst Panama IDIAP, 161 Carlos Lara St, City Knowledge 07144, Panama
[4] Univ Penn, New Bolton Ctr, Sch Vet Med, Dept Clin Studies, Kennett Sq, PA 19348 USA
[5] Univ Connecticut, Dept Ecol & Evolutionary Biol, Stamford, CT 06901 USA
基金
美国食品与农业研究所;
关键词
ASPARAGOPSIS-TAXIFORMIS; RUMEN METHANOGENESIS; FERMENTATION; BACTERIAL; IDENTIFICATION; POPULATIONS; INHIBITION; SEQUENCES; EMISSION; SEAWEED;
D O I
10.1038/s41598-023-36359-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study investigated the effects of 67 species of macroalgae on methanogenesis and rumen fermentation in vitro. Specimens were analyzed for their effect on ruminal fermentation and microbial community profiles. Incubations were carried out in an automated gas production system for 24-h and macroalgae were tested at 2% (feed dry matter basis) inclusion rate. Methane yield was decreased 99% by Asparagopsis taxiformis (AT) when compared with the control. Colpomenia peregrina also decreased methane yield 14% compared with control; no other species influenced methane yield. Total gas production was decreased 14 and 10% by AT and Sargassum horneri compared with control, respectively. Total volatile fatty acid (VFA) concentration was decreased between 5 and 8% by 3 macroalgae, whereas AT reduced it by 10%. Molar proportion of acetate was decreased 9% by AT, along with an increase in propionate by 14%. Asparagopsis taxiformis also increased butyrate and valerate molar proportions by 7 and 24%, respectively, whereas 3 macroalgae species decreased molar proportion of butyrate 3 to 5%. Vertebrata lanosa increased ammonia concentration, whereas 3 other species decreased it. Inclusion of AT decreased relative abundance of Prevotella, Bacteroidales, Firmicutes and Methanobacteriaceae, whereas Clostridium, Anaerovibrio and Methanobrevibacter were increased. Specific gene activities for Methanosphaera stadtmane and Methanobrevibacter ruminantium were decreased by AT inclusion. In this in vitro study, Asparagopsis taxiformis was most effective in decreasing methane concentration and yield, but also decreased total gas production and VFA concentration which indicates overall inhibition of ruminal fermentation. No other macroalgae were identified as potential mitigants of enteric methane.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Screening macroalgae for mitigation of enteric methane in vitro
    D. E. Wasson
    H. Stefenoni
    S. F. Cueva
    C. Lage
    S. E. Räisänen
    A. Melgar
    M. Fetter
    M. Hennessy
    K. Narayan
    N. Indugu
    D. Pitta
    C. Yarish
    A. N. Hristov
    Scientific Reports, 13
  • [2] Screening of tropical macroalgae for enteric methane mitigation effect in vitro.
    Wasson, D. E.
    Martins, L. F.
    Stepenchenko, N.
    Cueva, S. F.
    Garcia, C. F.
    Radulovich, R.
    Yarish, C.
    JOURNAL OF DAIRY SCIENCE, 2022, 105 : 310 - 310
  • [3] Enteric methane mitigation and fermentation kinetics of forage species from Southern Mexico: in vitro screening
    Valencia-Salazar, Sara S.
    Jimenez-Ferrer, Guillermo
    Arango, Jacobo
    Molina-Botero, Isabel
    Chirinda, Ngonidzashe
    Pineiro-Vazquez, Angel
    Jimenez-Ocampo, Rafael
    Nahed-Toral, Jose
    Ku-Vera, Juan
    AGROFORESTRY SYSTEMS, 2021, 95 (02) : 293 - 305
  • [4] Enteric methane mitigation and fermentation kinetics of forage species from Southern Mexico: in vitro screening
    Sara S. Valencia-Salazar
    Guillermo Jiménez-Ferrer
    Jacobo Arango
    Isabel Molina-Botero
    Ngonidzashe Chirinda
    Angel Piñeiro-Vázquez
    Rafael Jiménez-Ocampo
    José Nahed-Toral
    Juan Kú-Vera
    Agroforestry Systems, 2021, 95 : 293 - 305
  • [5] Enteric methane mitigation interventions
    Fouts, Julia Q.
    Honan, Mallory C.
    Roque, Breanna M.
    Tricarico, Juan M.
    Kebreab, Ermias
    TRANSLATIONAL ANIMAL SCIENCE, 2022, 6 (02)
  • [6] In vitro evaluation of enteric methane mitigation strategies: A meta-analysis.
    Martins, L. F.
    Congio, G. F. S.
    Cueva, S. F.
    Lage, C. F. A.
    Ramin, M.
    Silvestre, T.
    Tricarico, J.
    Hristov, A. N.
    JOURNAL OF DAIRY SCIENCE, 2022, 105 : 310 - 310
  • [7] Ruminant enteric methane mitigation: a review
    Cottle, D. J.
    Nolan, J. V.
    Wiedemann, S. G.
    ANIMAL PRODUCTION SCIENCE, 2011, 51 (06) : 491 - 514
  • [8] A Sustainable Approach to Managing Invasive Macroalgae: Assessment of the Nutritional Profile and the Potential for Enteric Methane Mitigation of Rugulopteryx okamurae
    Nunes, Helder P. B.
    Maduro-Dias, Cristiana
    Carvalho, Joana
    Borba, Alfredo
    OCEANS-SWITZERLAND, 2024, 5 (03): : 662 - 671
  • [9] Enteric methane mitigation strategies in ruminants: a review
    Ribeiro Pereira, Luiz Gustavo
    Machado, Fernanda S.
    Campos, Mariana M.
    Guimaraes Junior, Roberto
    Tomich, Thierry R.
    Reis, Larissa G.
    Coombs, Cassius
    REVISTA COLOMBIANA DE CIENCIAS PECUARIAS, 2015, 28 (02) : 124 - 143
  • [10] In-vitro screening of Kalahari browse species for rumen methane mitigation
    Francois Theart, Jacobus Johannes
    Hassen, Abubeker
    van Niekerk, Willem Adriaan
    Gemeda, Belete Shenkute
    SCIENTIA AGRICOLA, 2015, 72 (06): : 478 - 483