Existence and nonexistence of solutions for an approximation of the Paneitz problem on spheres

被引:0
|
作者
Bouh, Kamal Ould [1 ]
机构
[1] Inst Super Comptabilite & Adm Entreprises ISCAE, Nouakchott, Mauritania
关键词
Critical points; Critical exponent; Variational problem; Paneitz curvature; INVARIANT;
D O I
10.1186/s13661-023-01789-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to studying the nonlinear problem with slightly subcritical and supercritical exponents (S-+/-epsilon):Delta(2)u-c(n)Delta u + d(n)u = Ku(n+4/n-4 +/-epsilon),u > 0 on S-n, where n >= 5,epsilon is a small positive parameter and K is a smooth positive function on S-n. We construct some solutions of (S-epsilon) that blow up at one critical point of K. However, we prove also a nonexistence result of single-peaked solutions for the supercritical equation (S+epsilon).
引用
收藏
页数:14
相关论文
共 50 条