Existence and nonexistence of positive solutions to a fractional parabolic problem with singular weight at the boundary

被引:0
|
作者
Boumediene Abdellaoui
Kheireddine Biroud
El-Haj Laamri
机构
[1] Université Abou Bakr Belkaïd,Laboratoire d’Analyse Non Linéaire et Mathématiques Appliquées, Département de Mathématiques
[2] Ecole Supŕieure de Management,Institut Elie Cartan
[3] Université de Lorraine,undefined
来源
关键词
Fractional Nonlinear parabolic problems; Singular Hardy potential; Complete blow-up results; 35B05; 35K15; 35B40; 35K55; 35K65;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the problem (P)ut+(-Δ)su=λupδ2s(x)inΩT≡Ω×(0,T),u(x,0)=u0(x)inΩ,u=0in(IRN\Ω)×(0,T),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} (P)\left\{ \begin{array}{llll} u_t+(-\Delta )^{s} u &{}=&{} \lambda \dfrac{u^p}{\delta ^{2s}(x)} &{} \quad \text { in }\Omega _{T}\equiv \Omega \times (0,T) , \\ u(x,0)&{}=&{}u_0(x) &{} \quad \text { in }\Omega , \\ u&{}=&{}0 &{}\quad \text { in } ({I\!\!R}^N\setminus \Omega ) \times (0,T), \end{array}\right. \end{aligned}$$\end{document}where Ω⊂IRN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset {I\!\!R}^N$$\end{document} is a bounded regular domain (in the sense that ∂Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \Omega $$\end{document} is of class C0,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {C}}^{0,1}$$\end{document}), δ(x)=dist(x,∂Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta (x)=\text {dist}(x,\partial \Omega )$$\end{document}, 0<s<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<s<1$$\end{document}, p>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>0$$\end{document}, λ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda >0$$\end{document}. The purpose of this work is twofold. First We analyze the interplay between the parameters s, p and λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} in order to prove the existence or the nonexistence of solution to problem (P) in a suitable sense. This extends previous similar results obtained in the local case s=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s=1$$\end{document}. Second We will especially point out the differences between the local and nonlocal cases.
引用
收藏
页码:1227 / 1261
页数:34
相关论文
共 50 条