Generators of symmetric polynomials in free metabelian Leibniz algebras

被引:0
|
作者
Ozkurt, Zeynep [1 ]
Findik, Sehmus [1 ]
机构
[1] Cukurova Univ, Dept Math, TR-01330 Adana, Turkiye
关键词
Leibniz algebra; symmetric polynomial; generator;
D O I
10.1142/S0219498824502128
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let K be a field of characteristic zero, X-n = {x(1),..., x(n)} and R-n = {r(1),..., r(n)} be two sets of variables, Ln be the free metabelian Leibniz algebra generated by X-n, and K[R-n] be the commutative polynomial algebra generated by R-n over the base field K. Polynomials p(X-n) is an element of L-n and q(R-n) is an element of K[R-n] are called symmetric if they satisfy p(x(pi(1)),..., x(pi(n))) = p(X-n) and q(r(pi(1)),..., r(pi(n))) = q(R-n), respectively, for all pi is an element of S-n. The sets L-n(Sn) and K[R-n](Sn) of symmetric polynomials are the S-n-invariant subalgebras of L-n and K[R-n], respectively. The Leibniz subalgebra (L-n ')(Sn) = L-n(Sn) boolean AND L-n ' in the commutator ideal L-n ' of Ln is a right K[R-n](Sn)-module by the adjoint action. In this study, we provide a finite generating set for the right K[R-n](Sn)-module (L-n ')(Sn). In particular, we give free generating sets for (L-n ')(S2) and (L-3 ')(S3) as K[R-2](S2)-module and K[R-3](S3)-module, respectively.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Hall Bases for Free Leibniz Algebras
    M. Shahryari
    Bulletin of the Iranian Mathematical Society, 2019, 45 : 617 - 625
  • [42] Hall Bases for Free Leibniz Algebras
    Shahryari, M.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2019, 45 (02) : 617 - 625
  • [43] ON THE STRUCTURE OF FREE DUAL LEIBNIZ ALGEBRAS
    Naurazbekova, A.
    EURASIAN MATHEMATICAL JOURNAL, 2019, 10 (03): : 40 - 47
  • [44] A class of Lie racks associated to symmetric Leibniz algebras
    Abchir, Hamid
    Abid, Fatima-Ezzahrae
    Boucetta, Mohamed
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2022, 21 (11)
  • [45] Algebras of Symmetric *-Polynomials in the Space ℂ2
    Vasylyshyn Т.V.
    Strutinskii М.М.
    Journal of Mathematical Sciences, 2021, 253 (1) : 40 - 53
  • [46] Classical Invariant Theory for Free Metabelian Lie Algebras
    Drensky, Vesselin
    Findik, Sehmus
    JOURNAL OF LIE THEORY, 2019, 29 (04) : 1071 - 1092
  • [47] Classification of Five-Dimensional Symmetric Leibniz Algebras
    Choriyeva, Iroda
    Khudoyberdiyev, Abror
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2024, 50 (03)
  • [48] Automorphisms of finitely generated free metabelian Novikov algebras
    Bokut, Leonid A.
    Chen, Yuqun
    Zhang, Zerui
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024,
  • [49] ON AUTOMORPHISMS OF FREE CENTER-BY-METABELIAN LIE ALGEBRAS
    Kofinas, C. E.
    Papistas, A. I.
    QUARTERLY JOURNAL OF MATHEMATICS, 2015, 66 (02): : 625 - 643
  • [50] Ideals of Free Metabelian Lie Algebras and Primitive Elements
    I. V. Chirkov
    M. A. Shevelin
    Siberian Mathematical Journal, 2001, 42 : 610 - 612