Generators of symmetric polynomials in free metabelian Leibniz algebras

被引:0
|
作者
Ozkurt, Zeynep [1 ]
Findik, Sehmus [1 ]
机构
[1] Cukurova Univ, Dept Math, TR-01330 Adana, Turkiye
关键词
Leibniz algebra; symmetric polynomial; generator;
D O I
10.1142/S0219498824502128
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let K be a field of characteristic zero, X-n = {x(1),..., x(n)} and R-n = {r(1),..., r(n)} be two sets of variables, Ln be the free metabelian Leibniz algebra generated by X-n, and K[R-n] be the commutative polynomial algebra generated by R-n over the base field K. Polynomials p(X-n) is an element of L-n and q(R-n) is an element of K[R-n] are called symmetric if they satisfy p(x(pi(1)),..., x(pi(n))) = p(X-n) and q(r(pi(1)),..., r(pi(n))) = q(R-n), respectively, for all pi is an element of S-n. The sets L-n(Sn) and K[R-n](Sn) of symmetric polynomials are the S-n-invariant subalgebras of L-n and K[R-n], respectively. The Leibniz subalgebra (L-n ')(Sn) = L-n(Sn) boolean AND L-n ' in the commutator ideal L-n ' of Ln is a right K[R-n](Sn)-module by the adjoint action. In this study, we provide a finite generating set for the right K[R-n](Sn)-module (L-n ')(Sn). In particular, we give free generating sets for (L-n ')(S2) and (L-3 ')(S3) as K[R-2](S2)-module and K[R-3](S3)-module, respectively.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Test Sets in Free Metabelian Lie Algebras
    I. V. Chirkov
    M. A. Shevelin
    Siberian Mathematical Journal, 2002, 43 : 1135 - 1140
  • [32] The Nowicki conjecture for free metabelian Lie algebras
    Drensky, Vesselin
    Findik, Sehmus
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (05)
  • [33] Test sets in free metabelian Lie algebras
    Chirkov, IV
    Shevelin, MA
    SIBERIAN MATHEMATICAL JOURNAL, 2002, 43 (06) : 1135 - 1140
  • [34] Determination of endomorphisms of free metabelian Lie algebras
    Chirkov, IV
    Shevelin, MA
    SIBERIAN MATHEMATICAL JOURNAL, 2000, 41 (06) : 1205 - 1207
  • [35] Determination of Endomorphisms of Free Metabelian Lie Algebras
    I. V. Chirkov
    M. A. Shevelin
    Siberian Mathematical Journal, 2000, 41 : 1205 - 1207
  • [36] Weitzenbock derivations of free metabelian Lie algebras
    Dangovski, Rumen
    Drensky, Vesselin
    Findik, Sehmus
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (10) : 3279 - 3296
  • [37] Weitzenbock derivations of free metabelian associative algebras
    Dangovski, Rumen
    Drensky, Vesselin
    Findik, Sehmus
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2017, 16 (03)
  • [38] Complex symmetric generators of C*-algebras
    Zhu, Sen
    Zhao, Jiayin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 456 (02) : 796 - 822
  • [39] COMPLEX SYMMETRIC GENERATORS FOR OPERATOR ALGEBRAS
    Shen, Junhao
    Zhu, Sen
    JOURNAL OF OPERATOR THEORY, 2017, 77 (02) : 421 - 454
  • [40] Poisson algebras and symmetric Leibniz bialgebra structures on oscillator Lie algebras
    Albuquerque, H.
    Barreiro, E.
    Benayadi, S.
    Boucetta, M.
    Sanchez, J. M.
    JOURNAL OF GEOMETRY AND PHYSICS, 2021, 160