Generators of symmetric polynomials in free metabelian Leibniz algebras

被引:0
|
作者
Ozkurt, Zeynep [1 ]
Findik, Sehmus [1 ]
机构
[1] Cukurova Univ, Dept Math, TR-01330 Adana, Turkiye
关键词
Leibniz algebra; symmetric polynomial; generator;
D O I
10.1142/S0219498824502128
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let K be a field of characteristic zero, X-n = {x(1),..., x(n)} and R-n = {r(1),..., r(n)} be two sets of variables, Ln be the free metabelian Leibniz algebra generated by X-n, and K[R-n] be the commutative polynomial algebra generated by R-n over the base field K. Polynomials p(X-n) is an element of L-n and q(R-n) is an element of K[R-n] are called symmetric if they satisfy p(x(pi(1)),..., x(pi(n))) = p(X-n) and q(r(pi(1)),..., r(pi(n))) = q(R-n), respectively, for all pi is an element of S-n. The sets L-n(Sn) and K[R-n](Sn) of symmetric polynomials are the S-n-invariant subalgebras of L-n and K[R-n], respectively. The Leibniz subalgebra (L-n ')(Sn) = L-n(Sn) boolean AND L-n ' in the commutator ideal L-n ' of Ln is a right K[R-n](Sn)-module by the adjoint action. In this study, we provide a finite generating set for the right K[R-n](Sn)-module (L-n ')(Sn). In particular, we give free generating sets for (L-n ')(S2) and (L-3 ')(S3) as K[R-2](S2)-module and K[R-3](S3)-module, respectively.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Symmetric Polynomials in the Free Metabelian Lie Algebras
    Vesselin Drensky
    Şehmus Fındık
    Nazar Şahn Öüşlü
    Mediterranean Journal of Mathematics, 2020, 17
  • [2] Symmetric polynomials in the free metabelian Poisson algebras
    Dushimirimana, Andre
    Findik, Sehmus
    Oguslu, Nazar Sahin
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2023, 22 (02)
  • [3] Symmetric Polynomials in the Free Metabelian Lie Algebras
    Drensky, Vesselin
    Findik, Sehmus
    Oguslu, Nazar Sahin
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2020, 17 (05)
  • [4] Automorphisms of free metabelian Leibniz algebras
    Tas Adiyaman, Tuba
    Ozkurt, Zeynep
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (10) : 4348 - 4359
  • [5] NORMAL AUTOMORPHISMS OF FREE METABELIAN LEIBNIZ ALGEBRAS
    Ozkurt, Zeynep
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2024, 73 (01): : 147 - 152
  • [6] Symmetric polynomials in free center-by-metabelian Lie algebras of rank 2
    Kofinas, C. E.
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2024, 34 (01) : 1 - 21
  • [7] Automorphisms of free metabelian Leibniz algebras of rank three
    Adiyaman, Tuba Tas
    Ozkurt, Zeynep
    TURKISH JOURNAL OF MATHEMATICS, 2019, 43 (05) : 2262 - 2274
  • [8] Symmetric polynomials in Leibniz algebras and their inner automorphisms
    Findik, Sehmus
    Ozkurt, Zeynep
    TURKISH JOURNAL OF MATHEMATICS, 2020, 44 (06) : 2306 - 2311
  • [9] VARIETIES OF METABELIAN LEIBNIZ ALGEBRAS
    Drensky, Vesselin
    Cattaneo, Giulia Maria Piacentini
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2002, 1 (01) : 31 - 50
  • [10] Endomorphisms which preserve orbits of free metabelian Leibniz algebras
    Tas, Tuba Adiyama
    Ozkurt, Zeynep
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (02) : 566 - 571