How to prove optimal convergence rates for adaptive least-squares finite element methods

被引:2
|
作者
Bringmann, Philipp [1 ,2 ]
机构
[1] Humboldt Univ, Dept Math, Unter Linden 6, D-10099 Berlin, Germany
[2] TU Wien, Inst Anal & Sci Comp, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
基金
奥地利科学基金会;
关键词
least-squares finite element method; adaptive mesh-refinement; separate marking; alternative a posteriori error estimator; higher-order discretisations; optimal convergence rates; Poisson model problem; Stokes equations; linear elasticity equations; mixed boundary conditions; MARKING; AXIOMS; DIV; FEM;
D O I
10.1515/jnma-2021-0116
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The convergence analysis with rates for adaptive least-squares finite element methods (ALSFEMs) combines arguments from the a posteriori analysis of conforming and mixed finite element schemes. This paper provides an overview of the key arguments for the verification of the axioms of adaptivity for an ALSFEM for the solution of a linear model problem. The formulation at hand allows for the simultaneous analysis of first-order systems of the Poisson model problem, the Stokes equations, and the linear elasticity equations. Following [Carstensen and Park, SIAM J. Numer. Anal. 53(1), 2015], the adaptive algorithm is driven by an alternative residual-based error estimator with exact solve and includes a separate marking strategy for quasi-optimal data resolution of the right-hand side. This presentation covers conforming discretisations for an arbitrary polynomial degree and mixed homogeneous boundary conditions.
引用
收藏
页码:43 / 58
页数:16
相关论文
共 50 条