How to prove optimal convergence rates for adaptive least-squares finite element methods

被引:2
|
作者
Bringmann, Philipp [1 ,2 ]
机构
[1] Humboldt Univ, Dept Math, Unter Linden 6, D-10099 Berlin, Germany
[2] TU Wien, Inst Anal & Sci Comp, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
基金
奥地利科学基金会;
关键词
least-squares finite element method; adaptive mesh-refinement; separate marking; alternative a posteriori error estimator; higher-order discretisations; optimal convergence rates; Poisson model problem; Stokes equations; linear elasticity equations; mixed boundary conditions; MARKING; AXIOMS; DIV; FEM;
D O I
10.1515/jnma-2021-0116
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The convergence analysis with rates for adaptive least-squares finite element methods (ALSFEMs) combines arguments from the a posteriori analysis of conforming and mixed finite element schemes. This paper provides an overview of the key arguments for the verification of the axioms of adaptivity for an ALSFEM for the solution of a linear model problem. The formulation at hand allows for the simultaneous analysis of first-order systems of the Poisson model problem, the Stokes equations, and the linear elasticity equations. Following [Carstensen and Park, SIAM J. Numer. Anal. 53(1), 2015], the adaptive algorithm is driven by an alternative residual-based error estimator with exact solve and includes a separate marking strategy for quasi-optimal data resolution of the right-hand side. This presentation covers conforming discretisations for an arbitrary polynomial degree and mixed homogeneous boundary conditions.
引用
收藏
页码:43 / 58
页数:16
相关论文
共 50 条
  • [11] h-adaptive least-squares finite element methods for the 2D Stokes equations of any order with optimal convergence rates
    Bringmann, P.
    Carstensen, C.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (08) : 1923 - 1939
  • [12] An adaptive least-squares FEM for the Stokes equations with optimal convergence rates
    P. Bringmann
    C. Carstensen
    Numerische Mathematik, 2017, 135 : 459 - 492
  • [13] An adaptive least-squares FEM for the Stokes equations with optimal convergence rates
    Bringmann, P.
    Carstensen, C.
    NUMERISCHE MATHEMATIK, 2017, 135 (02) : 459 - 492
  • [14] ADAPTIVE LEAST-SQUARES MIXED GENERALIZED MULTISCALE FINITE ELEMENT METHODS
    Chen, Fuchen
    Chung, Eric
    Jiang, Lijian
    MULTISCALE MODELING & SIMULATION, 2018, 16 (02): : 1034 - 1058
  • [15] Finite element methods of least-squares type
    Bochev, PB
    Gunzburger, MD
    SIAM REVIEW, 1998, 40 (04) : 789 - 837
  • [16] Discrete least-squares finite element methods
    Keith, Brendan
    Petrides, Socratis
    Fuentes, Federico
    Demkowicz, Leszek
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 327 : 226 - 255
  • [17] COMPARATIVE CONVERGENCE RATES IN RITZ AND LEAST-SQUARES METHODS
    KOLLEGEN, M
    GORTLER, H
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1969, 49 (10): : 591 - &
  • [18] Least-squares finite element methods for the elasticity problem
    Yang, SY
    Liu, JL
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 87 (01) : 39 - 60
  • [19] LEAST-SQUARES FINITE ELEMENT METHODS FOR QUANTUM ELECTRODYNAMICS
    Brannick, J.
    Ketelsen, C.
    Manteuffel, T.
    McCormick, S.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (01): : 398 - 417
  • [20] ADAPTIVE APPROXIMATION BY OPTIMAL WEIGHTED LEAST-SQUARES METHODS
    Migliorati, Giovanni
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (05) : 2217 - 2245