CONVERGENCE AND OPTIMALITY OF ADAPTIVE LEAST SQUARES FINITE ELEMENT METHODS

被引:26
|
作者
Carstensen, Carsten [1 ,2 ]
Park, Eun-Jae [2 ,3 ]
机构
[1] Humboldt Univ, Inst Math, D-10099 Berlin, Germany
[2] Yonsei Univ, Dept Computat Sci & Engn, Seoul 120749, South Korea
[3] Yonsei Univ, Dept Math, Seoul 120749, South Korea
关键词
least squares finite element method; adaptive algorithm; optimal convergence rates; approximation class; a posteriori error estimates; discrete reliability;
D O I
10.1137/130949634
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The first-order div least squares finite element methods (LSFEMs) allow for an immediate a posteriori error control by the computable residual of the least squares functional. This paper establishes an adaptive refinement strategy based on some equivalent refinement indicators. Since the first-order div LSFEM measures the flux errors in H(div), the data resolution error measures the L-2 norm of the right-hand side f minus the piecewise polynomial approximation Pi f without a mesh-size factor. Hence the data resolution term is neither an oscillation nor of higher order and consequently requires a particular treatment, e.g., by the thresholding second algorithm due to Binev and DeVore. The resulting novel adaptive LSFEM with separate marking converges with optimal rates relative to the notion of a nonlinear approximation class.
引用
收藏
页码:43 / 62
页数:20
相关论文
共 50 条
  • [1] Convergence of natural adaptive least squares finite element methods
    Carsten Carstensen
    Eun-Jae Park
    Philipp Bringmann
    [J]. Numerische Mathematik, 2017, 136 : 1097 - 1115
  • [2] Convergence of natural adaptive least squares finite element methods
    Carstensen, Carsten
    Park, Eun-Jae
    Bringmann, Philipp
    [J]. NUMERISCHE MATHEMATIK, 2017, 136 (04) : 1097 - 1115
  • [3] CONVERGENCE AND OPTIMALITY OF ADAPTIVE MIXED FINITE ELEMENT METHODS
    Chen, Long
    Holst, Michael
    Xu, Jinchao
    [J]. MATHEMATICS OF COMPUTATION, 2009, 78 (265) : 35 - 53
  • [4] A short note on plain convergence of adaptive least-squares finite element methods
    Fuhrer, Thomas
    Praetorius, Dirk
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 80 (06) : 1619 - 1632
  • [5] How to prove optimal convergence rates for adaptive least-squares finite element methods
    Bringmann, Philipp
    [J]. JOURNAL OF NUMERICAL MATHEMATICS, 2023, 31 (01) : 43 - 58
  • [6] Adaptive Least Squares Finite Element Methods in Elasto-Plasticity
    Starke, Gerhard
    [J]. LARGE-SCALE SCIENTIFIC COMPUTING, 2010, 5910 : 671 - 678
  • [7] Adaptive least squares finite element method
    Afshar, MH
    [J]. COMPUTER TECHNIQUES FOR CIVIL AND STRUCTURAL ENGINEERING, 1999, : 223 - 228
  • [8] Convergence and quasi-optimality of adaptive finite element methods for harmonic forms
    Alan Demlow
    [J]. Numerische Mathematik, 2017, 136 : 941 - 971
  • [9] Convergence and quasi-optimality of adaptive finite element methods for harmonic forms
    Demlow, Alan
    [J]. NUMERISCHE MATHEMATIK, 2017, 136 (04) : 941 - 971
  • [10] ADAPTIVE LEAST-SQUARES MIXED GENERALIZED MULTISCALE FINITE ELEMENT METHODS
    Chen, Fuchen
    Chung, Eric
    Jiang, Lijian
    [J]. MULTISCALE MODELING & SIMULATION, 2018, 16 (02): : 1034 - 1058