Fully Printed Sensors for In Situ Temperature, Heat Flow, and Thermal Conductivity Measurements in Flexible Devices

被引:6
|
作者
Le Goupil, Florian [2 ]
Payrot, Guillaume [1 ]
Khiev, Sokha [1 ]
Smaal, Wiljan [1 ]
Hadziioannou, Georges [1 ]
机构
[1] ELORPrintTec, F-33600 Pessac, France
[2] Univ Bordeaux, Lab Chim Polymeres Organ LCPO, CNRS, Bordeaux INP,UMR 5629, F-33607 Pessac, France
来源
ACS OMEGA | 2023年
关键词
FABRICATION PROCESS; MECHANICS; SKIN;
D O I
10.1021/acsomega.2c07590
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Flexible temperature sensors allow temperature monitoring in wearable healthcare devices. A temperature sensor, which can be printed on flexible substrates, is designed and fabricated using a low-cost silver particle ink and a fast and scalable screen-printing process. A high temperature resolution of 10 m degrees C is reached. The versatility of this temperature sensor design is demonstrated for various applications, including in situ heat flux measurements, where a 2 mW cm-2 resolution is reached, and thermal conductivity measurements on polymer films as thin as 25 mu m, with a wide range of accessible values from similar to 0.1 to 0.8 W K-1m-1.
引用
收藏
页码:8481 / 8487
页数:7
相关论文
共 50 条
  • [21] Shallow subsurface thermal structure onshore Denmark: temperature, thermal conductivity and heat flow
    Moller, Ingelise
    Balling, Niels
    Ditlefsen, Claus
    BULLETIN OF THE GEOLOGICAL SOCIETY OF DENMARK, 2019, 67 : 29 - 52
  • [22] Heat flow and thermal conductivity measurements in the northeastern Pennsylvania Appalachian Basin depocenter
    Rauch, Chelsea
    Barrie, Kyle
    Collins, Steven C.
    Hornbach, Matthew J.
    Brokaw, Casey
    AAPG BULLETIN, 2018, 102 (11) : 2155 - 2170
  • [23] RADIAL HEAT FLOW THERMAL CONDUCTIVITY APPARATUS FOR MEASUREMENTS ON SULFIDE AND TELLURIDE MELTS
    WILLIAMS, RK
    VEERABURUS, M
    PHILBROOK, WO
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1968, 39 (08): : 1104 - +
  • [24] Radiative heat losses in thermal conductivity measurements: a correction for linear temperature gradients
    Galazka, K.
    Populoh, S.
    Xie, W.
    Hulliger, J.
    Weidenkaff, A.
    MEASUREMENT, 2016, 90 : 187 - 191
  • [25] Ultrathin Injectable Sensors of Temperature, Thermal Conductivity, and Heat Capacity for Cardiac Ablation Monitoring
    Koh, Ahyeon
    Gutbrod, Sarah R.
    Meyers, Jason D.
    Lu, Chaofeng
    Webb, Richard Chad
    Shin, Gunchul
    Li, Yuhang
    Kang, Seung-Kyun
    Huang, Yonggang
    Efimov, Igor R.
    Rogers, John A.
    ADVANCED HEALTHCARE MATERIALS, 2016, 5 (03) : 373 - 381
  • [26] IN-SITU MEASUREMENTS OF SALINITY, CONDUCTIVITY AND TEMPERATURE
    PINGREE, RD
    DEEP-SEA RESEARCH, 1970, 17 (03): : 603 - &
  • [27] In Situ Thermal Conductivity Measurements of Building Materials with a Thermal Probe
    Pilkington, B.
    Goodhew, S.
    deWilde, P.
    JOURNAL OF TESTING AND EVALUATION, 2010, 38 (03) : 339 - 346
  • [28] Prediction of thermal conductivity of granite rocks from porosity and density data at normal temperature and pressure:: in situ thermal conductivity measurements
    Maqsood, A
    Kamran, K
    Gul, IH
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2004, 37 (24) : 3396 - 3401
  • [29] Influence of Temperature and Humidity on Carbon Based Printed Flexible Sensors
    Nag, Anindya
    Mukhopadhyay, Subhas
    Kosel, Jurgen
    2017 ELEVENTH INTERNATIONAL CONFERENCE ON SENSING TECHNOLOGY (ICST), 2017, : 88 - 93
  • [30] Photolithographically Printed Flexible Silk/PEDOT:PSS Temperature Sensors
    Pradhan, Sayantan
    Yadavalli, Vamsi K.
    ACS APPLIED ELECTRONIC MATERIALS, 2021, 3 (01) : 21 - 29