Individual ignition of RF microplasma array at atmospheric pressure

被引:0
|
作者
Martinet, David [1 ]
Filliger, Sebastian [2 ]
Germanier, Alain [1 ]
Gugler, Gilbert [2 ]
Ellert, Christoph [1 ]
机构
[1] Univ Appl Sci Western Switzerland Valais HES SO V, Inst Syst Engn, CH-1950 Sion, Switzerland
[2] Sch Engn & Architecture Fribourg HEIA FR, iPrint Inst, Marly, Switzerland
关键词
atmospheric pressure plasma; individual ignition; plasma array; sub millimetric;
D O I
10.1002/ppap.202200131
中图分类号
O59 [应用物理学];
学科分类号
摘要
Following the trend of miniaturization in semiconductor industry, atmospheric plasma jets in array configuration were developed for cleaning or treatment of workpieces under homogeneous conditions. We describe here first, the development of a small array of five individual identical plasma cells where each cell is ignited and quenched individually, which can be upscaled to several tens or hundreds of cells. The power electronics for ignition of plasma is composed of a multiplexing system with a kHz high-voltage plasma ignition pulse and an RF-supply that can be distributed to each ignited cell to maintain the plasma in the respective cell. Experimental results show an ignition voltage for argon of 1300 V and RF-current per cell of 70 mA.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Characterisation of a 3 nanosecond pulsed atmospheric pressure argon microplasma
    Walsh, J. L.
    Iza, F.
    Kong, M. G.
    EUROPEAN PHYSICAL JOURNAL D, 2010, 60 (03): : 523 - 530
  • [42] Characterisation of a 3 nanosecond pulsed atmospheric pressure argon microplasma
    J. L. Walsh
    F. Iza
    M. G. Kong
    The European Physical Journal D, 2010, 60 : 523 - 530
  • [43] Synthesis of iron oxide nanoparticles in microplasma under atmospheric pressure
    Lin, Liangliang
    Starostin, Sergey A.
    Hessel, Volker
    Wang, Qi
    CHEMICAL ENGINEERING SCIENCE, 2017, 168 : 360 - 371
  • [44] Characteristics of Atmospheric Pressure Argon Microplasma Jet in Open Environment
    Xia, Linghan
    Chang, Zezhou
    Li, Yimeng
    Shi, Ruoli
    Cheng, Yonghong
    Meng, Guodong
    Gaodianya Jishu/High Voltage Engineering, 50 (12): : 5638 - 5647
  • [45] Atmospheric pressure microplasma source based on parallel stripline resonator
    Tran, T. H.
    You, S. J.
    Park, M.
    Kim, J. H.
    Seong, D. J.
    Shin, Y. H.
    Jeong, J. R.
    CURRENT APPLIED PHYSICS, 2011, 11 (05) : S126 - S130
  • [46] Simulation of a direct current microplasma discharge in helium at atmospheric pressure
    Wang, Qiang
    Economou, Demetre J.
    Donnelly, Vincent M.
    JOURNAL OF APPLIED PHYSICS, 2006, 100 (02)
  • [47] RADIAL MEASUREMENTS OF GAS DISCHARGE PARAMETERS OF ATMOSPHERIC PRESSURE MICROPLASMA
    Caetano, R.
    Hoyer, Y. D.
    Barbosa, I. M.
    Grigorov, K. G.
    Sismanoglu, B. N.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2013, 27 (18):
  • [48] Surface Coating of Bonded PDMS Microchannels by Atmospheric Pressure Microplasma
    Bashir, Muhammad
    Bashir, Shazia
    Rees, Julia M.
    Zimmerman, William. B.
    PLASMA PROCESSES AND POLYMERS, 2014, 11 (03) : 279 - 288
  • [49] Thin film deposition by means of atmospheric pressure microplasma jet
    Benedikt, J.
    Raballand, V.
    Yanguas-Gil, A.
    Focke, K.
    von Keudell, A.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2007, 49 (12B) : B419 - B427
  • [50] Dissociation of tetramethylsilane for the growth of SiC nanocrystals by atmospheric pressure microplasma
    Ul Haq, Atta
    Lucke, Philip
    Benedikt, Jan
    Maguire, Paul
    Mariotti, Davide
    PLASMA PROCESSES AND POLYMERS, 2020, 17 (05)