Individual ignition of RF microplasma array at atmospheric pressure

被引:0
|
作者
Martinet, David [1 ]
Filliger, Sebastian [2 ]
Germanier, Alain [1 ]
Gugler, Gilbert [2 ]
Ellert, Christoph [1 ]
机构
[1] Univ Appl Sci Western Switzerland Valais HES SO V, Inst Syst Engn, CH-1950 Sion, Switzerland
[2] Sch Engn & Architecture Fribourg HEIA FR, iPrint Inst, Marly, Switzerland
关键词
atmospheric pressure plasma; individual ignition; plasma array; sub millimetric;
D O I
10.1002/ppap.202200131
中图分类号
O59 [应用物理学];
学科分类号
摘要
Following the trend of miniaturization in semiconductor industry, atmospheric plasma jets in array configuration were developed for cleaning or treatment of workpieces under homogeneous conditions. We describe here first, the development of a small array of five individual identical plasma cells where each cell is ignited and quenched individually, which can be upscaled to several tens or hundreds of cells. The power electronics for ignition of plasma is composed of a multiplexing system with a kHz high-voltage plasma ignition pulse and an RF-supply that can be distributed to each ignited cell to maintain the plasma in the respective cell. Experimental results show an ignition voltage for argon of 1300 V and RF-current per cell of 70 mA.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Atmospheric pressure microwave microplasma microorganism deactivation
    Czylkowski, D.
    Hrycak, B.
    Jasinski, M.
    Dors, M.
    Mizeraczyk, J.
    SURFACE & COATINGS TECHNOLOGY, 2013, 234 : 114 - 119
  • [22] Diagnostics of atmospheric pressure microplasma with a liquid electrode
    Q. Chen
    H. Shirai
    The European Physical Journal D, 2012, 66
  • [23] Atmospheric pressure microplasma jet as a depositing tool
    Benedikt, J.
    Focke, K.
    Yanguas-Gil, A.
    von Keudell, A.
    APPLIED PHYSICS LETTERS, 2006, 89 (25)
  • [24] Controlled microdroplet transport in an atmospheric pressure microplasma
    Maguire, P. D.
    Mahony, C. M. O.
    Kelsey, C. P.
    Bingham, A. J.
    Montgomery, E. P.
    Bennet, E. D.
    Potts, H. E.
    Rutherford, D. C. E.
    McDowell, D. A.
    Diver, D. A.
    Mariotti, D.
    APPLIED PHYSICS LETTERS, 2015, 106 (22)
  • [25] The effects of the tube diameter on the discharge ignition and the plasma properties of atmospheric-pressure microplasma confined inside capillary
    Wu, Shuqun
    Wu, Fei
    Liu, Chang
    Liu, Xueyuan
    Chen, Yuxiu
    Shao, Tao
    Zhang, Chaohai
    PLASMA PROCESSES AND POLYMERS, 2019, 16 (03)
  • [26] Measurement of atmospheric pressure microplasma jet with Langmuir probes
    Xu, Kunning G.
    Doyle, Steven J.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2016, 34 (05):
  • [27] Surface Modification of GaN Substrate by Atmospheric Pressure Microplasma
    Shimizu, Kazuo
    Noma, Yuta
    Blajan, Marius
    Naritsuka, Shigeya
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2012, 51 (08)
  • [28] ATMOSPHERIC PRESSURE MICROPLASMA SYSTEM WITH VORTEX GAS FLOW
    Solomenko, O.
    Chernyak, V.
    Lendiel, V.
    Hamazin, D.
    Kalustova, D.
    HAKONE XV: INTERNATIONAL SYMPOSIUM ON HIGH PRESSURE LOW TEMPERATURE PLASMA CHEMISTRY: WITH JOINT COST TD1208 WORKSHOP: NON-EQUILIBRIUM PLASMAS WITH LIQUIDS FOR WATER AND SURFACE TREATMENT, 2016, : 232 - 235
  • [29] Hydrophobic coatings deposited with an atmospheric pressure microplasma jet
    Vogelsang, Andreas
    Ohl, Andreas
    Foest, Ruediger
    Schroeder, Karsten
    Weltmann, Klaus-Dieter
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2010, 43 (48)
  • [30] Nitric oxide generated by atmospheric pressure air microplasma
    Matsuo, Keita
    Yoshida, Hidekazu
    Choi, Jaegu
    Hosseini, S. Hamid R.
    Namihira, Takao
    Katsuki, Sunao
    Akiyama, Hidenori
    2009 IEEE PULSED POWER CONFERENCE, VOLS 1 AND 2, 2009, : 996 - 1000