Spatio-temporal interactive fusion based visual object tracking method

被引:0
|
作者
Huang, Dandan [1 ]
Yu, Siyu [1 ]
Duan, Jin [1 ]
Wang, Yingzhi [1 ]
Yao, Anni [1 ]
Wang, Yiwen [1 ]
Xi, Junhan [1 ]
机构
[1] Changchun Univ Sci & Technol, Coll Elect Informat Engn, Changchun, Peoples R China
基金
中国国家自然科学基金;
关键词
object tracking; spatio-temporal context; feature enhancement; feature fusion; attention mechanism;
D O I
10.3389/fphy.2023.1269638
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Visual object tracking tasks often struggle with utilizing inter-frame correlation information and handling challenges like local occlusion, deformations, and background interference. To address these issues, this paper proposes a spatio-temporal interactive fusion (STIF) based visual object tracking method. The goal is to fully utilize spatio-temporal background information, enhance feature representation for object recognition, improve tracking accuracy, adapt to object changes, and reduce model drift. The proposed method incorporates feature-enhanced networks in both temporal and spatial dimensions. It leverages spatio-temporal background information to extract salient features that contribute to improved object recognition and tracking accuracy. Additionally, the model's adaptability to object changes is enhanced, and model drift is minimized. A spatio-temporal interactive fusion network is employed to learn a similarity metric between the memory frame and the query frame by utilizing feature enhancement. This fusion network effectively filters out stronger feature representations through the interactive fusion of information. The proposed tracking method is evaluated on four challenging public datasets. The results demonstrate that the method achieves state-of-the-art (SOTA) performance and significantly improves tracking accuracy in complex scenarios affected by local occlusion, deformations, and background interference. Finally, the method achieves a remarkable success rate of 78.8% on TrackingNet, a large-scale tracking dataset.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] The Evolution of Meaning: Spatio-temporal Dynamics of Visual Object Recognition
    Clarke, Alex
    Taylor, Kirsten I.
    Tyler, Lorraine K.
    JOURNAL OF COGNITIVE NEUROSCIENCE, 2011, 23 (08) : 1887 - 1899
  • [42] Spatio-temporal modeling based on Hidden Markov Model for Object Tracking in Satellite Imagery
    Essid, Houcine
    Ben Abbes, Ali
    Farah, Imed Riadh
    Barra, Vincent
    2012 6TH INTERNATIONAL CONFERENCE ON SCIENCES OF ELECTRONICS, TECHNOLOGIES OF INFORMATION AND TELECOMMUNICATIONS (SETIT), 2012, : 351 - 358
  • [43] Spatio-Temporal Object Recognition
    De Geest, Roeland
    Deboeverie, Francis
    Philips, Wilfried
    Tuytelaars, Tinne
    ADVANCED CONCEPTS FOR INTELLIGENT VISION SYSTEMS, ACIVS 2015, 2015, 9386 : 681 - 692
  • [44] Online Spatio-temporal Structural Context Learning for Visual Tracking
    Wen, Longyin
    Cai, Zhaowei
    Lei, Zhen
    Yi, Dong
    Li, Stan Z.
    COMPUTER VISION - ECCV 2012, PT IV, 2012, 7575 : 716 - 729
  • [45] Robust Visual Tracking via Spatio-Temporal Cue Integration
    He, Yang
    Pei, Mingtao
    Yang, Min
    Wu, Yuwei
    Liang, Wei
    FIFTH INTERNATIONAL CONFERENCE ON GRAPHIC AND IMAGE PROCESSING (ICGIP 2013), 2014, 9069
  • [46] Combining Spatio-Temporal Context and Kalman Filtering for Visual Tracking
    Yang, Haoran
    Wang, Juanjuan
    Miao, Yi
    Yang, Yulu
    Zhao, Zengshun
    Wang, Zhigang
    Sun, Qian
    Wu, Dapeng Oliver
    MATHEMATICS, 2019, 7 (11)
  • [47] Joint Spatio-Temporal Similarity and Discrimination Learning for Visual Tracking
    Liang, Yanjie
    Chen, Haosheng
    Wu, Qiangqiang
    Xia, Changqun
    Li, Jia
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (08) : 7284 - 7300
  • [48] Spatio-temporal mix deformable feature extractor in visual tracking
    Huang, Yucheng
    Xiao, Ziwang
    Firkat, Eksan
    Zhang, Jinlai
    Wu, Danfeng
    Hamdulla, Askar
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 237
  • [49] Adaptive Spatio-Temporal Context Learning for Visual Target Tracking
    Marvasti-Zadeh, Seyed Mojtaba
    Ghanei-Yakhdan, Hossein
    Kasaei, Shohreh
    2017 10TH IRANIAN CONFERENCE ON MACHINE VISION AND IMAGE PROCESSING (MVIP), 2017, : 10 - 14
  • [50] Robust Visual Tracking with Dual Spatio-Temporal Context Trackers
    Sun, Shiyan
    Zhang, Hong
    Yuan, Ding
    SEVENTH INTERNATIONAL CONFERENCE ON GRAPHIC AND IMAGE PROCESSING (ICGIP 2015), 2015, 9817