Spatio-temporal interactive fusion based visual object tracking method

被引:0
|
作者
Huang, Dandan [1 ]
Yu, Siyu [1 ]
Duan, Jin [1 ]
Wang, Yingzhi [1 ]
Yao, Anni [1 ]
Wang, Yiwen [1 ]
Xi, Junhan [1 ]
机构
[1] Changchun Univ Sci & Technol, Coll Elect Informat Engn, Changchun, Peoples R China
基金
中国国家自然科学基金;
关键词
object tracking; spatio-temporal context; feature enhancement; feature fusion; attention mechanism;
D O I
10.3389/fphy.2023.1269638
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Visual object tracking tasks often struggle with utilizing inter-frame correlation information and handling challenges like local occlusion, deformations, and background interference. To address these issues, this paper proposes a spatio-temporal interactive fusion (STIF) based visual object tracking method. The goal is to fully utilize spatio-temporal background information, enhance feature representation for object recognition, improve tracking accuracy, adapt to object changes, and reduce model drift. The proposed method incorporates feature-enhanced networks in both temporal and spatial dimensions. It leverages spatio-temporal background information to extract salient features that contribute to improved object recognition and tracking accuracy. Additionally, the model's adaptability to object changes is enhanced, and model drift is minimized. A spatio-temporal interactive fusion network is employed to learn a similarity metric between the memory frame and the query frame by utilizing feature enhancement. This fusion network effectively filters out stronger feature representations through the interactive fusion of information. The proposed tracking method is evaluated on four challenging public datasets. The results demonstrate that the method achieves state-of-the-art (SOTA) performance and significantly improves tracking accuracy in complex scenarios affected by local occlusion, deformations, and background interference. Finally, the method achieves a remarkable success rate of 78.8% on TrackingNet, a large-scale tracking dataset.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] STRUCTURAL SPATIO-TEMPORAL TRANSFORM FOR ROBUST VISUAL TRACKING
    Tang, Yazhe
    Lao, Mingjie
    Lin, Feng
    Wu, Denglu
    2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 1105 - 1109
  • [32] STAT: Multi-Object Tracking Based on Spatio-Temporal Topological Constraints
    Zhang, Junjie
    Wang, Mingyan
    Jiang, Haoran
    Zhang, Xinyu
    Yan, Chenggang
    Zeng, Dan
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 4445 - 4457
  • [33] Visual object tracking using sparse context-aware spatio-temporal correlation filter
    Elayaperumal, Dinesh
    Joo, Young Hoon
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2020, 70
  • [34] Spatio-temporal hierarchical feature transformer for UAV object tracking
    Zhu, Fuzhen
    Cui, Jingyi
    Dou, Kaiqi
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2023, 204 : 442 - 452
  • [35] Asymmetric Deformable Spatio-temporal Framework forInfrared Object Tracking
    Wu, Jingjing
    Zhou, Xi
    Li, Xiaohong
    Liu, Hao
    Qi, Meibin
    Hong, Richang
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2024, 20 (10)
  • [36] Learning Spatio-Temporal Information for Multi-Object Tracking
    Wei, Jian
    Yang, Mei
    Liu, Feng
    IEEE ACCESS, 2017, 5 : 3869 - 3877
  • [37] MULTIPLE OBJECT TRACKING BY HIERARCHICAL ASSOCIATION OF SPATIO-TEMPORAL DATA
    Beleznai, Csaba
    Schreiber, David
    2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, : 41 - 44
  • [38] SiamST: Siamese network with spatio-temporal awareness for object tracking
    Zhang, Hong
    Xing, Wanli
    Yang, Yifan
    Li, Yan
    Yuan, Ding
    INFORMATION SCIENCES, 2023, 634 : 122 - 139
  • [39] A Characterization of Interactive Visual Data Stories With a Spatio-Temporal Context
    Mayer, Benedikt
    Steinhauer, Nastasja
    Preim, Bernhard
    Meuschke, Monique
    COMPUTER GRAPHICS FORUM, 2023, 42 (06)
  • [40] Enhancing Moving Object Segmentation with Spatio-Temporal Information Fusion
    Chen, Siyu
    Huang, Yilei
    Li, Qilin
    Wang, Ruosong
    Zhang, Zhenhai
    2024 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION, ICMA 2024, 2024, : 1783 - 1788