Cooperative Sensing and Heterogeneous Information Fusion in VCPS: A Multi-Agent Deep Reinforcement Learning Approach

被引:1
|
作者
Xu, Xincao [1 ]
Liu, Kai [2 ]
Dai, Penglin [3 ,4 ]
Xie, Ruitao [5 ]
Cao, Jingjing [6 ]
Luo, Jiangtao [7 ]
机构
[1] Univ Elect Sci & Technol China, Shenzhen Inst Adv Study, Shenzhen 518110, Peoples R China
[2] Chongqing Univ, Coll Comp Sci, Chongqing 400040, Peoples R China
[3] Southwest Jiaotong Univ, Sch Comp & Artificial Intelligence, Chengdu 611756, Peoples R China
[4] Natl Engn Lab Integrated Transportat Big Data Appl, Chengdu 611756, Peoples R China
[5] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R China
[6] Wuhan Univ Technol, Sch Transportat & Logist Engn, Wuhan 430063, Hubei, Peoples R China
[7] Chongqing Univ Posts & Telecommun, Elect Informat & Networking Res Inst, Chongqing 400065, Peoples R China
基金
中国国家自然科学基金;
关键词
Vehicular cyber-physical system; edge computing; cooperative sensing; heterogeneous information fusion; multi-agent deep reinforcement learning; DATA DISSEMINATION;
D O I
10.1109/TITS.2023.3340334
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Cooperative sensing and heterogeneous information fusion are critical to realize vehicular cyber-physical systems (VCPSs). This paper makes the first attempt to quantitatively measure the quality of VCPS by designing a new metric called Age of View (AoV). Specifically, we first present the system architecture where heterogeneous information can be cooperatively sensed and uploaded via vehicle-to-infrastructure (V2I) communications in vehicular edge computing (VEC). Logical views are constructed by fusing the heterogeneous information at edge nodes. Further, we formulate the problem by deriving a cooperative sensing model based on the multi-class M/G/1 priority queue, and defining the AoV by modeling the timeliness, completeness and consistency of the logical views. On this basis, a multi-agent difference reward based actor-critic with V2I bandwidth allocation (MDRAC-VBA) solution is proposed. In particular, the system state includes vehicle sensed information, edge cached information and view requirements. The vehicle action space consists of the sensing frequencies and uploading priorities of information. A difference-reward-based credit assignment is designed to divide the system reward, which is defined as the VCPS quality, into the difference reward for vehicles. Edge node allocates V2I bandwidth to vehicles based on predicted vehicle trajectories and view requirements. Finally, we build the simulation model and give a comprehensive performance evaluation, which conclusively demonstrates the superiority of MDRAC-VBA.
引用
收藏
页码:4876 / 4891
页数:16
相关论文
共 50 条
  • [41] Cooperative Data Sensing and Computation Offloading in UAV-Assisted Crowdsensing With Multi-Agent Deep Reinforcement Learning
    Cai, Ting
    Yang, Zhihua
    Chen, Yufei
    Chen, Wuhui
    Zheng, Zibin
    Yu, Yang
    Dai, Hong-Ning
    [J]. IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2022, 9 (05): : 3197 - 3211
  • [42] Multi-Agent Deep Reinforcement Learning Based Downlink Beamforming in Heterogeneous Networks
    Zhang, Zitian
    Hou, Jinbo
    Chu, Xiaoli
    Zhou, Haibo
    Wei, Guiyi
    Zhang, Jie
    [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (06) : 4247 - 4263
  • [43] HALFTONING WITH MULTI-AGENT DEEP REINFORCEMENT LEARNING
    Jiang, Haitian
    Xiong, Dongliang
    Jiang, Xiaowen
    Yin, Aiguo
    Ding, Li
    Huang, Kai
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 641 - 645
  • [44] Deep reinforcement learning for multi-agent interaction
    Ahmed, Ibrahim H.
    Brewitt, Cillian
    Carlucho, Ignacio
    Christianos, Filippos
    Dunion, Mhairi
    Fosong, Elliot
    Garcin, Samuel
    Guo, Shangmin
    Gyevnar, Balint
    McInroe, Trevor
    Papoudakis, Georgios
    Rahman, Arrasy
    Schafer, Lukas
    Tamborski, Massimiliano
    Vecchio, Giuseppe
    Wang, Cheng
    Albrecht, Stefano, V
    [J]. AI COMMUNICATIONS, 2022, 35 (04) : 357 - 368
  • [45] Multi-agent deep reinforcement learning: a survey
    Sven Gronauer
    Klaus Diepold
    [J]. Artificial Intelligence Review, 2022, 55 : 895 - 943
  • [46] Lenient Multi-Agent Deep Reinforcement Learning
    Palmer, Gregory
    Tuyls, Karl
    Bloembergen, Daan
    Savani, Rahul
    [J]. PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS (AAMAS' 18), 2018, : 443 - 451
  • [47] Multi-agent deep reinforcement learning: a survey
    Gronauer, Sven
    Diepold, Klaus
    [J]. ARTIFICIAL INTELLIGENCE REVIEW, 2022, 55 (02) : 895 - 943
  • [48] Deep Multi-Agent Reinforcement Learning: A Survey
    Liang X.-X.
    Feng Y.-H.
    Ma Y.
    Cheng G.-Q.
    Huang J.-C.
    Wang Q.
    Zhou Y.-Z.
    Liu Z.
    [J]. Zidonghua Xuebao/Acta Automatica Sinica, 2020, 46 (12): : 2537 - 2557
  • [49] Learning to Communicate with Deep Multi-Agent Reinforcement Learning
    Foerster, Jakob N.
    Assael, Yannis M.
    de Freitas, Nando
    Whiteson, Shimon
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [50] Learning Cooperative Intrinsic Motivation in Multi-Agent Reinforcement Learning
    Hong, Seung-Jin
    Lee, Sang-Kwang
    [J]. 12TH INTERNATIONAL CONFERENCE ON ICT CONVERGENCE (ICTC 2021): BEYOND THE PANDEMIC ERA WITH ICT CONVERGENCE INNOVATION, 2021, : 1697 - 1699